Infamous malware examples

A General Definition of Malware

(SRM Seminar) Conficker detected in November 2008— still active— can cause a

computer under the Windows operating system to become a
component of a remote-controlled botnet against the user’'s will—
Simon Kramer on an infected computer, it causes a buffer overflow in which
(j.w.w. Julian C. Bradfield, U Edinburgh) harmful excess code is executed by the operating system— the
excess code downloads more code that hijacks the server services

University of Luxembourg of the operating system, in order to update and spread the worm

Institute of Mathematical Sciences, Chennai via the network— variant code inhibits also the security services of
the operating system and connections to anti-malware
May 17, 2010 websites. . . affected European military systems. . .

Stuxnet http:
//www.schneier.com/blog/archives/2010/10/stuxnet.html

. Jwoskitugg
S o
. NG q .
N

L] .
- des s | I I Fonds National de la
UNIVERSITE DU .I ® Formation Recherche Luxembour: $
LUXEMBOURG ® recherche o 9 —

World-wide malware impact World-wide malware impact (continued)

World-wide malware-induced damage in 2006 = $13.3 - 10°

[Computer Economics Inc., 2007]

Malware Detections b CountyResion per 1000) ™

| kS [v
W Qoo
W [Jow
Wees [Jows
Wren Wue
Woer Woes

[censss

* MSRT = Malicious Software Removal Tool
[Microsoft Security Intelligence Report, Volume 7, January through June 2009]

Motivation, Goal, and Methodology
Malware as harmful software

Harm as incorrectness

Prerequisites

Outline
Introduction
Motivation, Goal, and Methodology
Malware as harmful software
Harm as incorrectness
Prerequisites

Motivation, Goal, and Methodology

Motivation An open problem [FHZ06]: find a general definition
of malware (= malicious software), e.g., botnets,
rootkits, Trojan horses, viruses, worms, etc.

Malware Logic
Preliminaries
Malware and Benware

Anti-malware and Medware Goal Obtain a formal solution to the problem.

Tasks, Tools, and Techniques Methodology Formulation of the solution as a single sentence in
Conclusion a computational modal fixpoint logic.
Assessment

Related work
Future work

Selected Bibliography

A General Definition of Malware

Motivation, Goal, and Methodology
Malware as harmful software

Harm as incorrectness

Prerequisites

Motivation, Goal, and Methodology
Malware as harmful software

Harm as incorrectness

Prerequisites

Malware as harmful software Harm as incorrectness

What is malware?

» Informally, » doing harm = causing that

|ma|ware — malicious software| actual behaviour # intended behaviour

» Malicious intention is not generally directly observable! » actuality — intention = incorrectness

» How to distinguish unawareness (juvenile hacking, accidental » defining principle for malware:
anti-hacking) from malice?

» Users don’t care: all that matters is (harmful) effect, not
(malicious) intention. harmful attack = falsification of a necessary condition for

» Malice is immaterial! correctness

» psychological “definition”

|causation of incorrectness|

v

» formal systems engineering
> Intuitively, » correctness intention must be specified
|malware = harmful software | » we don't care how:

» Harmful effect is observable!

» scientific definition

Motivation, Goal, and Methodology
Malware as harmful software

Harm as incorrectness
Prerequisites

Example: Sorting

» Given: a program s for sorting an array A of / integers

» Sought: a correctness definition for s
» Pre := A:Array,(Z)
> Post 1= V(1< i< V(1<) <N)(i<j—All<A[)
Is that strong enough?

> |correct(s) A0ff Froare Pre{s} Post|

» Variations: add necessary conditions (e.g., exact algorithmic
complexity), stipulate proof-carrying code, etc.

Preliminaries

Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Preliminaries

Definition (Damaging software)

A software system s damages a correct software system s’ by
definition if and only if s (directly or indirectly) causes
incorrectness to s’. Formally,

s damages s’ :iff correct(s’) and not correct(s(s’)) | directly
s damages’ s’ :iff s damages s’
s damages"t s’ Giff there is s” s.t. not s” damages® s’ | indirectly
and s(s”) damages"” s’
s damages® s’ :iff | J, oy s damages” s

Motivation, Goal, and Methodology
Malware as harmful software

Harm as incorrectness

Prerequisites

Prerequisites

Theorem (Knaster-Tarski fixpoint theorem)

Let (L, <) designate a complete lattice! and f : L — L a
monotonic map2 on L. Then,

g:=\/{alaclanda<f(a)}

is the greatest fixpoint of f, and, dually,
/::/\{a|a€Landf(a)§a}

is the least fixpoint of f.

1\/ S (lub) and A S (glb) exist for arbitrary S C L
*for all a,b € L, if a < b then f(a) < f(b)

A General Definition of Malware

Preliminaries

Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Preliminaries

Definition (Repairing software)

A software system s repairs an incorrect software system s’ by
definition if and only if s (directly or indirectly) causes correctness
to s’. Formally,

srepairs s' :iff not correct(s’) and correct(s(s’)) | directly
s repairs’ s :iff s repairs s’
s repairs™! s’ iff there is s” s.t. not s” repairs® s’ indirectly
and s(s”) repairs” s’
s repairs® s’ :iff [J, o S repairs” s

Preliminaries

Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Malware Logic

Definition (MalLog)
Let M designate a countable set of propositional variables M, and
®3¢:=M|-¢|sA¢|VD(9) | VR(®) | vM(9)

the language ¢ of MalLog where all free occurrences of M in ¢ of
vM(¢) are assumed to occur within an even number of
occurrences of = to guarantee the existence of (greatest) fixpoints
(expressed by vM(¢)) [BSO7].

A General Definition of Malware

Preliminaries

Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Malware Logic (continued)

Further, ¢ V qb/ = —|(—|¢ A —|¢5/), T:=¢V g, L:=-T,
¢ ¢ =9V, ¢ ¢ = (0= ¢)A (Y —), and

ID(¢) = ~VD(-¢)
IR() = —VR(-0)
UM(S(M)) = —wM(-6(~M)).

Finally,
» forallp € dands€ S, s = ¢:iff s € |9
» =¢iffforallse S, sEo¢

» for all ¢, ¢’ € ®,

» o= ¢ iff forall s € S, if s = ¢ then s |= ¢/
» & @ iff g = ¢ and ¢ = ¢.

Preliminaries

Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Malware Logic (continued)

Then, given the (or only some sub-) class S of software systems
(not just pieces of software) s and an interpretation [] : M — 25

of propositional variables, the interpretation || - || : ® — 25 of
MalLog-propositions is:
IMligp == [M]
1=ollgy = S\l
le ANy = lgllpy N ll¢'llgy
IVD(#)llfg = { s|forall s, if s damages® s’ then s" € [|¢]|p }
IVR(#)llpp = {s|foralls', if srepairs® s then s’ € [¢|f }

M@y = S TS S 160y)

where [-J{m—s) maps M to S and otherwise agrees with [-].
~ Simon Kramer (jw.w. Julian C. Bradfield, U Edinburgh)

Basic properties of MallLog

A General Definition of Malware

Preliminaries

Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Fact

1L E¢—d iffg=¢

(By expansion of the definitions.)

2. FEoediffos ¢

3. MalLog is a member of the family of u-calculi over the modal
system Ky, which is characterised by the validities of
propositional logic and the modal laws

EO(p— ¢') — (06 — O¢) and “if = ¢ then = O¢”,
where OJ € {VD,VR}.

Preliminaries

Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Basic properties of MalLog (continued)

Corollary

1. /f damages® and repairs® are decidable on a given software
systems domain then the satisfiability problem for MalLog,
i.e., “Given ¢ € ®, is theres € S s.t. s |= ¢?", (and thus also
the model-checking problem, i.e., “Given ¢ € ® ands € S, is
it the case that s |= ¢?") is decidable.

2. MallLog is axiomatisable by the following Hilbert-style
proof-system:

2.1 the axioms/rules of the modal system K for each VD and VR

2.2 the axiom (1, M(H(M))) — pM($(M))
/) = ¢)/

2.3 the rule W o

Preliminaries

Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

An iterative paraphrase

» Everything is malware (better be safe than sorry)

» except for (throw out what is clearly safe) the following
systems:

0. non-damaging systems (CP)

1. systems that damage only systems that damage CP
(ATF1)

2. systems that damage only systems that damage ATF1
(ATF2)

3. systems that damage only systems that damage ATF2
(ATF3)

4. etc.

Preliminaries

Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Defining malware

Definition (Malware)

A software system s is malware by definition if and only if s
damages non-damaging software systems (the civil population so
to say) or software systems that damage malware (the anti-terror
force so to say). Formally,

mal(s) :iff s vM(3ID(VD(M))).

A General Definition of Malware

Preliminaries

Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Deriving benware

Definition (Benware)

A software system s is benware by definition if and only if s is
non-damaging or damages only software systems that damage
benware. Formally,

ben(s) :iff sE pM(VD(3ID(M))).

Preliminaries

Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

An iterative paraphrase

» Nothing is benware (again, better be safe than sorry)

» except for (throw in what is clearly safe) the following
systems:

0. non-damaging systems (CP)

1. systems that damage only systems that damage CP
(ATF1)

2. systems that damage only systems that damage ATF1
(ATF2)

3. systems that damage only systems that damage ATF2
(ATF3)

4. etc.

Preliminaries

Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Anti-malware

Definition (Anti-malware)

A software system s is anti-malware by definition if and only if s
damages no benware (safety)? and s neutralises* malware
(effectiveness). Formally,

antimal(s) :iff s} —3ID(BEN) and
there is s’ s.t. mal(s’) and not mal(s(s’))

where BEN := pM(VD(3ID(M))).

3no friendly fire
*Damage is insufficient!

Preliminaries

Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

The Malware-versus-Benware arms race

Fact
ben(s) if and only if not mal(s)

Malware

- = - = P P

Good&Bad distinction induced by the existence of a
population that is (perceived as) non-damaging

A General Definition of Malware

Preliminaries

Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Medware

Definition (Medware)

A software system s is medware by definition if and only if s
damages no benware (safety) and s repairs benware (effectiveness).
Formally,

med(s) :iff s k= -~3D(BEN) A IR(BEN).

Outline

Introduction

Malware Logic
Conclusion

Selected Bibliography

Preliminaries

Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Tasks, Tools, and Techniques for fighting Malware

Task Tool ‘ Technique
detection satisfaction relation = Model Checking
. language & bisimulation . .
comparison guag } Equivalence Checking
equivalence
classification | characteristic formulas MC, EC
Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware
Outline

Preliminaries

Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Introduction

Malware Logic
Conclusion

Selected Bibliography

Malware Comparison (operational)

Definition (Bisimulation equivalence)

» Forall 51,5 €S,
» 51 C s, :iff for all s] € S,
1. if s; damages® s; then there is s; € S s.t. s, damages® s)
2. if 51 repairs® s; then there is s € S s.t. s, repairs® sj.

» Forall SC S xS,
Oc(S) ={(s1,2)eS|siCsand s C s }.

» ~ := the greatest fixpoint of (monotonic) O
=U{S|SCOc(S) }, by Knaster-Tarski

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline

Introduction

Malware Logic
Conclusion

Selected Bibliography

Preliminaries

Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Malware Comparison (declarative)

Definition (Language equivalence)

For all 51,5 € S,
> 51 Lo s iff for all ¢ € @, if 51 = ¢ then 55 = ¢
> 51 =¢ S :iff 5t C¢ s» and sp Co 51.

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

Outline

Introduction

Malware Logic
Conclusion

Selected Bibliography

Preliminaries

Malware and Benware
Anti-malware and Medware
Tasks, Tools, and Techniques

Malware Classification

Definition (Characteristic formula)

Let SCS,s€8,D(S,s):={5s"|s €S and s damages® s’ },
R(S,s):={ s | s €S and s repairs® s’ }, and Ms € M. Then,
the characteristic formula x(s, S) of the software system s w.r.t.
S is the solution of the equation system

Ms = YD(Vyep(s,s) Ms) AVR(V yergs,s) Msr) A
[/\S’ED(S,S) 3ID(/\/ISI)] A [/\S’ER(S,S) 3R(I\/IS’)]a

(where \/ 0 := L and A0 := T) obtained [BS07] by translating
each equation M’ £ ¢)/(S) into a formula M/ (1)/(S)) and
recursively substituting these formulae for the corresponding free
variables in the first formula v M(1s(S)).

Simon Kramer (j.w.w. Julian C. Bradfield, U Edinburgh) A General Definition of Malware

For all s,s' € S,

s=¢s iff s~s iff skEx(s,S).

Our approach:
1.

2.
3.
4.
5.

malware-versus-benware arms race confined to formal systems
engineering

malware detection ~~ automated systems verification

system security ~> system correctness

generic (predicate correct is a plug-in)

hacker-safe:

| no recipe for malware construction derivable|

About viruses only, not hacker-safe (constructive):
1. Adleman: Godel-numberings [AdI88]
2. Cohen: Turing-machines [Coh87]
3. Bonfante et al.: Kleene Recursion Theorem [BKMOG6]

Refinements:
» add time (temporal modalities): malware evolution

» add measure: degrees of damage, malware cost

F. Cohen.
Computer viruses: Theory and experiments.
Journal of Computers & Security, 6, 1987.

L. Adleman.
An abstract theory of computer viruses.
In Proceedings of CRYPTO'88, volume 403 of LNCS, 1988.

G. Bonfante, M. Kaczmarek, and J.-Y. Marion.
On abstract computer virology from a recursion theoretic
perspective.
Journal in Computer Virology, 1(3-4), 2006.

Email:
simon.kramer@a3.epfl.ch

Homepage:
http://www.simon-kramer.ch/

E. Filiol, M. Helenius, and S. Zanero.
Open problems in computer virology.
Journal in Computer Virology, 1(3-4), 2006.

S. Kramer and J.C. Bradfield.
A general definition of malware.
Journal in Computer Virology, Online First, 2009.
http://dx.doi.org/10.1007/s11416-009-0137-1

J.C. Bradfield and C. Stirling.
Handbook of Modal Logic, volume 3 of Studies in Logic and
Practical Reasoning, chapter Modal Mu-Calculi.
Elsevier, 2007.

