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Cryptographically-Enforced Access Control
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Cryptographically-Enforced Access Control: Scalability

Cryptographic enforcement. .. /University of Luxembourg/July 2012 4/47



Graph-Based Authorization Policies
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A Generic Single-Key Enforcement Mechanism

> We treat encryption keys like
any other protected resource
(that is, we encrypt them)
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A Generic Single-Key Enforcement Mechanism

» We treat encryption keys like
any other protected resource
(that is, we encrypt them)

» For every edge (x,y), encrypt
k(y) using k(x) (iterative key Ev(a)(5(a))
derivation by the end user)

> Alternatively, for every y that is
reachable from x, encrypt x(y) E(c)(r(a))
using k(x) (direct key
derivation)

> Clearly, there are trade-offs between

» the number of keys that need to be encrypted
» the number of key derivation operations performed by a user
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Security Considerations: Key Recovery

» It should be computationally hard for u to derive x(y) unless there is
a path from A\(u) to y

» More generally, it should be computationally hard for a group of users
Ucollude € U to pool key information and derive x(y) unless there

exists u € Ucoliude Such that there is a directed path from A(u) to y

» For appropriate choices of encryption function E, edge-based
encryption schemes satisfy the above properties
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Security Considerations: Key Indistinguishability

» Informally, it should be computationally hard to
distinguish between a key k(y) and a random
value

» Edge-based encryption schemes do not satisfy
this property (since successful key derivation
and object decryption provides a means of
distinguishing)

» Schemes having key indistinguishability can be
constructed (modulo certain assumptions about
the attack model) by modifying the graph and
the labeling function
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Space-Time Trade-Offs
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Introduction

» Given an authorization graph Gyuh = (V, Eauen) and x,y € V, let

(x,y) € Eenr if and only if k(y) is encrypted using k(x)

» We say E.¢ € V x Vis policy-enforcing if and only if E] ,, = E_ ¢

» The distance between x,y € V is the number of edges in the shortest
path from x to y; the diameter of G = (V/, E) is defined to be

max{d(x,y) : x,y € V}

|Eauth| = 12; diameter = 3 |Eenf| = 25; diameter = 1
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Introduction

» Given an authorization graph Gyuh = (V, Eauen) and x,y € V, let

(x,y) € Eenr if and only if k(y) is encrypted using k(x)

» We say E.¢ € V x Vis policy-enforcing if and only if E] ,, = E_ ¢

» The distance between x,y € V is the number of edges in the shortest
path from x to y; the diameter of G = (V/, E) is defined to be

max{d(x,y) : x,y € V}

|Eauth| = 12; diameter = 3 |Eenf| = 25; diameter = 1

» We are interested in the trade-offs between the cardinality of E..¢ and
the diameter of Geps
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Trade-Offs for a Total Order

Let V be a total order on n elements (V, <); then there exist sets of
enforcing edges E.ns such that

| Eenf| | d(Genf)
In(n—1) 1
©(nlog n) 2
©(nloglogn) 3
©(nlog™ n) 4
n—1 n—1

Cryptographic enforcement. .. /University of Luxembourg/July 2012 11/47



Trade-Offs for a Total Order : An lllustration

Consider a total order of 16 elements, for which
we will construct a two-hop scheme
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Trade-Offs for a Total Order : An lllustration

Consider a total order of 16 elements, for which
we will construct a two-hop scheme

Step 1 Connect the top eight nodes to a
“median node” and connect that node
to the remaining nodes

Step 2 Repeat for each chain of length 8
Step 3 Repeat for each chain of length 4
Step 4 Repeat for each chain of length 2

For a chain of n elements there are log n rounds;
each round adds fewer than n edges; the
diameter of the resulting graph is 2
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Introduction

» Protected data is released
periodically

» Each release period is regarded
as a time point

[1,5]

» An interval is a consecutive
sequence of time points:
V=A[ij]:1<i<j<n}

» Each user is authorized for some (L1 221 331 (@4 [55]
interval

» The authorization graph
resembles a triangular mesh
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The Naive Approach

We could just apply the iterative (5]
cryptographic enforcement method to
the triangular mesh

» We require m(m — 1) edges

» Key derivation requires no more
than m — 1 hops (L1 221 [33]  [44] [55]
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The Naive Approach Or Not?

We could just apply the iterative (5]
cryptographic enforcement method to
the triangular mesh
» We require m(m — 1) edges
» Key derivation requires no more
than m — 1 hops

[1,1] [2,2] [3.3] [4.4] [5.5]

Alternatively, we could ask what trade-offs are possible for this particular
authorization graph and this particular application?
» Solutions to the problem have either adapted methods for total orders
or for arbitrary graphs
» We tackle the problem in a more direct way
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A Crucial Observation

Protected objects are associated with a particular time point, not an
interval

» The key for time point i is assigned label [/, /]

» No object is assigned a label [i, ] with i < j

A user only needs to derive keys for labels of the form [/, /] ‘

This assertion is not true in general for authorization graphs
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Problem Summary

Given V = {[i,j] : 1 < i <j < m}, find an edge set E C V x V such that
1. there exists a path from [/, j] to [k, k] for all k € [i, ]
2. |E| is small
3. the diameter of the graph (V, E) is small

—
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Temporal Access Control
Binary Decomposition
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The One-Hop Scheme

» The one-hop scheme is useful as a base scheme in more complex
recursive constructions

» Every non-"leaf” node is connected to the appropriate “leaf” nodes
» The diameter of the graph is 1
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» The one-hop scheme is useful as a base scheme in more complex
recursive constructions

» Every non-"leaf” node is connected to the appropriate “leaf” nodes
» The diameter of the graph is 1

> ey — €m—1 = (tm — 1), where t,, = %m(m +1)
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Two Results

Let T, denote the set of intervals {[i,j] : 1 <i<j< m}

Proposition
Let E be an enforcing set of edges for Tp,. Then |E| = m(m —1).
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Two Results

Let T, denote the set of intervals {[i,j] : 1 <i<j< m}
Proposition

Let E be an enforcing set of edges for Tp,. Then |E| = m(m —1).

Proposition
There exists an enforcing set of edges E such that |E| = m(m — 1) and
the diameter of (Tp, E) is [log m].
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An Explicit Construction for T
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Temporal Access Control

Multiplicative Decomposition
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Nodes and Supernodes

If m = ab, then T,, can be regarded as a copy of T} in which the
“supernodes” are copies of T, and D,
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Nodes and Supernodes

If m = ab, then T,, can be regarded as a copy of T} in which the
“supernodes” are copies of T, and D,

» Each interval in D, is the disjoint union of no more than b intervals in
copies of T,

» Given an interval in D, add edges to appropriate nodes in copies of T,
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A Two-Hop Scheme

» Divide T, into a® blocks so that each block contains a single node
from each D,

» Each node in a block occupies the same relative position within its
respective copy of D,
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A Two-Hop Scheme

» Divide T, into a® blocks so that each block contains a single node
from each D,

» Each node in a block occupies the same relative position within its
respective copy of D,

» Construct a® copies of a 1-hop scheme for Tj, and a 1-hop scheme for
each copy of T,
> In total, the number of edges required is
1
gab(a(b —1)(b+4)+(a—1)(a+4))
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Generalizing the Two-Hop Construction

Writing 36 = 3.3.4 we obtain the following decomposition of T34
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Generalizing the Two-Hop Construction

Writing 36 = 3.3.4 we obtain the following decomposition of T3
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Generalizing the Two-Hop Construction

Theorem

Let m = H7:1 aj, where a; is an integer and 2 < a; < ajy1 for all i. Then

there exists an enforcing set of edges E such that the diameter of (T, E)
is d and J
2

m (ai —1)(ai +4)

|E| = - Z R A il AL

)
i

i=1
where T; = aj ... a;.
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(ai—1)(ai+4)

1

Some Remarks about the Term

> Successive terms in the summation are approximately equal when
ai+1 ~ a2 (minimize d)
» The ith term in the summation is minimized when a; = 2
(minimize |E|)
» Consider m =36
Factors |E|
2 175
6.6 362.@
49136 .E
2
3.3.4 | 36 .g
2
2.2.3.3 | 36°.155

B W NN NN
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Corollary 1

Theorem

... there exists an enforcing set of edges E such that the diameter of
(Tm, E) is d and

Q

2

IE\:%ZM

=
i=1 !
Corollary

If m = a9, then there exists an enforcing edge set E such that
|E| = tm(m — 1)(a + 4) and the diameter of (T, E) is d = log, m.
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Corollary 2

Theorem

... there exists an enforcing set of edges E such that the diameter of
(Tm, E) is d and
2 4 (2. —1)(a +4
=y e

6 < T
i=1

Corollary

Let m = 22° for some integer d > 2. Then there exists an enforcing edge
set E such that

1
|E| < m? <1—|—6Ioglogm>

and the diameter of (Tp,, E) is loglog m.
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Temporal Access Control

Related Work
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Comparison

Public Storage Derivation
Atallah et al. 2007 O (m?log m)
O (m?) O (log™ nv)
De Santis et al., 2008 O (m?) | O (logmlog™ m)
O (m?log m) O (log* m)
O (m? log mlog log m) 3
Crampton, 2009 m(m — 1) [log m]
Lmm 1)+ ) 2
Crampton, 2010 | m* (1 + £ [log log m]) [log log m]
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Practical and Efficient Enforcement

» My approach attacks the problem directly and makes use of specific
characteristics of the application

» My constructions yield explicit formulae (rather than asymptotic
behaviour) for the number of edges and the number of hops required

» My schemes can be implemented directly using existing iterative key
encrypting schemes
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Extensions to Higher Dimensions
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“Geo-Spatial” Access Control Policies

» Data objects are associated with a point in a two-dimensional grid

» Users are authorized for rectangles
covering a set of points in the grid

12)x[1,2)

Q[1.2]x[2,2]

» The set of rectangles ordered by
subset inclusion forms a partially ERIMEPIS
ordered set 12

[2.2][2,2]
» The set of nodes in the
authorization graph is T, x T, e =

» We will write T,, , to denote
Tmx T,
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The Main Results

Theorem

There exists an enforcing set of edges E such that the diameter of the graph (Ty,n, E) is
bounded by [log n] and

1 8
|E| = §n2(n —1)(2n+5) < 3 | Ton| -

Theorem

There exists an enforcing sets of edges E such that the diameter of (T im, E) is
log m + log k = log km and

E| = %km2(3(k ~ 1)m(m + 1) + 2(m — 1)(2m + 5)).

Corollary
For k > 1, there exists an enforcing set of edges E such that the diameter of ( Tpm,km, E)
is log km and

1

|E| <2|Tm,km| (1+ 3_k

8
g_Tmm-
) <317
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Interval-Based Access Control Policies

Define T,ﬁ‘: Ty x---x T,
—_——
k times
Theorem

There exists a set of enforcing edges E for T such that the diameter of
(Tk, E) islogn and

nk &S 7k (3T — 1) (nf — 1
|E|:2_k,z<i>( 2i)£1 !

Corollary
Elis© ()" TH]).
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Sketch Proof: k =1
Consider [x,y], 1< x <y <2m
» x and y can be regarded as the “corners” of the interval [x, y|
» Each corner can be labelled with a bit, where 0 indicates it is less
than or equal to m and 1 indicates it is greater than m
» If x and y's labels are the same, then the interval [x, y] is completely
contained in a subinterval of length m

1 X m y 2m
I

1 m 2m
I

1 m 2m

Cryptographic enforcement. .. /University of Luxembourg/July 2012 39/47



Sketch Proof: k =2

» We only need to add (two) edges in the recursive step if the corner
labels are different

1 X m y 2m

» Hence, the recurrence relation for the number of edges has the form
e(2m) = 2a+ 2e(m)

where a is the number of intervals whose corner labels are different

> If the corner labels are different we have m choices for each of x and

y, whence a = m?
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Sketch Proof: k =2

» The bottom left-hand and top right-hand corners
of a rectangle can each be associated with a pair in
{0,1}?

» Moreover, if the two corners are represented by
(bl, bz) and (tl, tz) then by < t; and by < b

> A rectangle straddles 29 squares of side m, where

0 < d < 2 is the Hamming distance between these
corners
» The Hamming distance is the number of places in
which the two pairs differ
» For d > 0, 29 is the number of edges required
from that rectangle in the recursive step

Cryptographic enforcement. .. /University of Luxembourg/July 2012
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Sketch Proof: k =2

» The number of choices for the co-ordinates of the
corners is also determined by the Hamming distance

(5mm+ 1))(2_d) (m?)?

» If b; = t; then there are %m(m + 1) choices for the
endpoints of the ith interval
» If b; < t; then there are m? choices
» Finally, the number of corner pairs with Hamming
distance d is given by 2279(2)
» If b; = t; then there are two choices for b;
» If b; < t; then there is only once choice for b;
» There are (3) ways in which we can choose corners

d
with Hamming distance d

Cryptographic enforcement. .. /University of Luxembourg/July 2012
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Sketch Proof: k =2

» We deduce the recurrence relation
2
e(2m) = 4e(m) + > a(d)B(d)(d)
d=1

» a(d) = 29 is the number of edges required to connect a rectangle with
Hamming distance d to sub-rectangles contained with copies of a
square of side m

» B(d) = (’"T“)2_d m9+2 is the number of rectangles with Hamming
distance d

» y(d) =2279(3) is the number of ways of fitting rectangles with
Hamming distance d in a square of side 2m

» Thatis

e(2m) = 4e(m) + mzdzi:l (m+1)* <C21>
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Sketch Proof: The General Case

v

Any “hyperinterval” Z in T2km can be represented as the union of at
most 2K hyperintervals in copies of the hypercube [1, m]*

» T is associated with two k-tuples in {0,1}*, which identify the
bottom left-hand and top right-hand “hypercorners” of 7

v

The Hamming distance 0 < d < k determines the number of:
» copies of [1, m]* that Z straddles (and hence the out-degree of 7),
which equals 29
» choices for the co-ordinates of Z, which equals (3m(m + 1))*=¢(m
» choices for hypercubes containing the hypercorners, which equals
24
We deduce the following recurrence relation

2)d

v

k
e(2m, k) =2"e (m, k) +m* >_(2m)(m + 1)~ @
d=1
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Concluding Remarks
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Contributions

» First work in this area to develop techniques tailored for the problem
» First work to provide exact (and better) bounds for the number of
edges
» First work to retain the simplicity of existing iterative schemes
» Other constructions require auxiliary data structures
» Other constructions require more complex key derivation algorithms
» First work to provide explicit constructions for higher dimensions that
are natural extensions of those for lower dimensions
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