Cryptographic Enforcement of Interval-Based Access Control Policies

Jason Crampton

Information Security Group Royal Holloway, University of London

University of Luxembourg, 3 July 2012

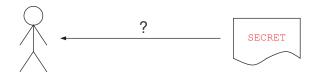
Cryptographic Access Control

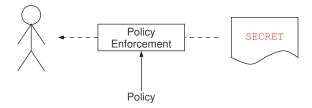
Space-Time Trade-Offs

Temporal Access Control
Binary Decomposition
Multiplicative Decomposition
Related Work

Extensions to Higher Dimensions

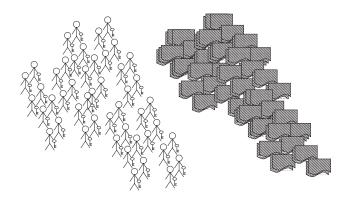
Concluding Remarks



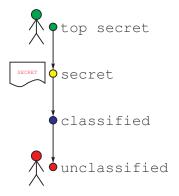


Cryptographically-Enforced Access Control

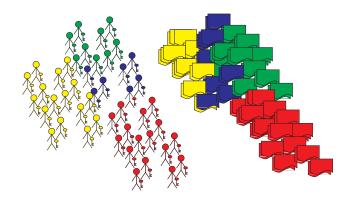
Cryptographically-Enforced Access Control: Scalability



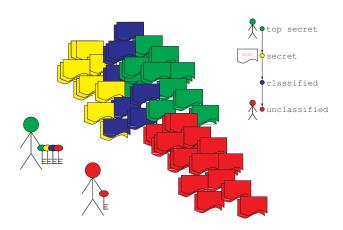
Graph-Based Authorization Policies



Graph-Based Authorization Policies

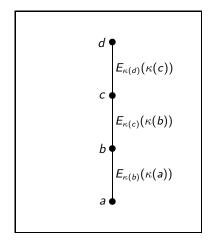


Graph-Based Authorization Policies

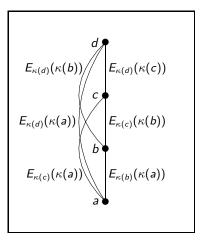


 We treat encryption keys like any other protected resource (that is, we encrypt them)

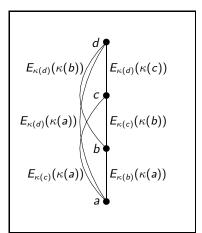
- We treat encryption keys like any other protected resource (that is, we encrypt them)
- For every edge (x, y), encrypt $\kappa(y)$ using $\kappa(x)$ (iterative key derivation by the end user)



- We treat encryption keys like any other protected resource (that is, we encrypt them)
- For every edge (x, y), encrypt $\kappa(y)$ using $\kappa(x)$ (iterative key derivation by the end user)
- Alternatively, for every y that is reachable from x, encrypt $\kappa(y)$ using $\kappa(x)$ (direct key derivation)



- We treat encryption keys like any other protected resource (that is, we encrypt them)
- For every edge (x, y), encrypt $\kappa(y)$ using $\kappa(x)$ (iterative key derivation by the end user)
- Alternatively, for every y that is reachable from x, encrypt $\kappa(y)$ using $\kappa(x)$ (direct key derivation)



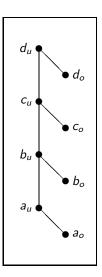
- ► Clearly, there are trade-offs between
 - ▶ the number of keys that need to be encrypted
 - the number of key derivation operations performed by a user

Security Considerations: Key Recovery

- It should be computationally hard for u to derive $\kappa(y)$ unless there is a path from $\lambda(u)$ to y
- More generally, it should be computationally hard for a group of users $U_{\text{Collude}} \subseteq U$ to pool key information and derive $\kappa(y)$ unless there exists $u \in U_{\text{Collude}}$ such that there is a directed path from $\lambda(u)$ to y
- ► For appropriate choices of encryption function *E*, edge-based encryption schemes satisfy the above properties

Security Considerations: Key Indistinguishability

- Informally, it should be computationally hard to distinguish between a key $\kappa(y)$ and a random value
- Edge-based encryption schemes do not satisfy this property (since successful key derivation and object decryption provides a means of distinguishing)
- Schemes having key indistinguishability can be constructed (modulo certain assumptions about the attack model) by modifying the graph and the labeling function



Cryptographic Access Contro

Space-Time Trade-Offs

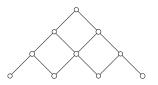
Temporal Access Contro

Extensions to Higher Dimensions

Concluding Remarks

Introduction

- ▶ Given an authorization graph $G_{\text{auth}} = (V, E_{\text{auth}})$ and $x, y \in V$, let $(x, y) \in E_{enf}$ if and only if $\kappa(y)$ is encrypted using $\kappa(x)$
- ▶ We say $E_{\mathsf{enf}} \subseteq V \times V$ is policy-enforcing if and only if $E_{\mathsf{auth}}^* = E_{\mathsf{enf}}^*$
- ▶ The distance between $x, y \in V$ is the number of edges in the shortest path from x to y; the diameter of G = (V, E) is defined to be $\max \{d(x, y) : x, y \in V\}$



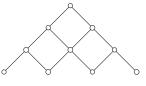
 $|E_{auth}| = 12$; diameter = 3



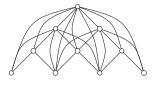
 $|E_{enf}| = 25$; diameter = 1

Introduction

- ▶ Given an authorization graph $G_{\text{auth}} = (V, E_{\text{auth}})$ and $x, y \in V$, let $(x, y) \in E_{\text{enf}}$ if and only if $\kappa(y)$ is encrypted using $\kappa(x)$
- ▶ We say $E_{\mathsf{enf}} \subseteq V \times V$ is policy-enforcing if and only if $E_{\mathsf{auth}}^* = E_{\mathsf{enf}}^*$
- ▶ The distance between $x, y \in V$ is the number of edges in the shortest path from x to y; the diameter of G = (V, E) is defined to be $\max \{d(x, y) : x, y \in V\}$



 $|E_{auth}| = 12$; diameter = 3



 $|E_{enf}| = 25$; diameter = 1

▶ We are interested in the trade-offs between the cardinality of E_{enf} and the diameter of G_{enf}

Trade-Offs for a Total Order

Let V be a total order on n elements (V, \leq) ; then there exist sets of enforcing edges E_{enf} such that

$ E_{enf} $	$d(G_{enf})$
$\frac{1}{2}n(n-1)$	1
$\Theta(n \log n)$	2
$\Theta(n \log \log n)$	3
$\Theta(n\log^* n)$	4
n-1	n-1

Consider a total order of 16 elements, for which we will construct a two-hop scheme

Consider a total order of 16 elements, for which we will construct a two-hop scheme

Step 1 Connect the top eight nodes to a "median node" and connect that node to the remaining nodes

Consider a total order of 16 elements, for which we will construct a two-hop scheme

Step 1 Connect the top eight nodes to a "median node" and connect that node to the remaining nodes

Step 2 Repeat for each chain of length 8

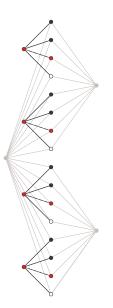


Consider a total order of 16 elements, for which we will construct a two-hop scheme

Step 1 Connect the top eight nodes to a "median node" and connect that node to the remaining nodes

Step 2 Repeat for each chain of length 8

Step 3 Repeat for each chain of length 4



Consider a total order of 16 elements, for which we will construct a two-hop scheme

- Step 1 Connect the top eight nodes to a "median node" and connect that node to the remaining nodes
- Step 2 Repeat for each chain of length 8
- Step 3 Repeat for each chain of length 4
- Step 4 Repeat for each chain of length 2

Consider a total order of 16 elements, for which we will construct a two-hop scheme

- Step 1 Connect the top eight nodes to a "median node" and connect that node to the remaining nodes
- Step 2 Repeat for each chain of length 8
- Step 3 Repeat for each chain of length 4
- Step 4 Repeat for each chain of length 2

For a chain of n elements there are $\log n$ rounds; each round adds fewer than n edges; the diameter of the resulting graph is 2

References

M.J. Atallah, M. Blanton, and K.B. Frikken.

Key management for non-tree access hierarchies.

In Proceedings of SACMAT 2006.

H. L. Bodlaender, G. Tel, and N. Santoro.

Trade-offs in non-reversing diameter.

Nordic Journal of Computing, 1994.

J. Crampton, K. M. Martin, and P. Wild.

On key assignment for hierarchical access control.

In Proceedings of CSFW 2006.

A. C.-C. Yao.

Space-time tradeoff for answering range queries.

In Proceedings of STOC 1982.

Cryptographic Access Contro

Space-Time Trade-Offs

Temporal Access Control

Extensions to Higher Dimensions

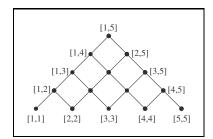
Concluding Remarks

Introduction

- Protected data is released. periodically
- Each release period is regarded as a time point
- An interval is a consecutive sequence of time points:

$$V = \{[i,j] : 1 \leqslant i \leqslant j \leqslant n\}$$

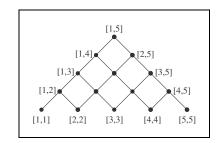
- Each user is authorized for some interval
- ► The authorization graph resembles a triangular mesh



The Naïve Approach

We could just apply the iterative cryptographic enforcement method to the triangular mesh

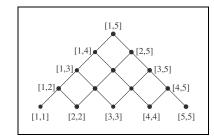
- We require m(m-1) edges
- ▶ Key derivation requires no more than m − 1 hops



The Naïve Approach Or Not?

We could just apply the iterative cryptographic enforcement method to the triangular mesh

- We require m(m-1) edges
- Key derivation requires no more than m-1 hops



Alternatively, we could ask what trade-offs are possible for this particular authorization graph and this particular application?

- Solutions to the problem have either adapted methods for total orders or for arbitrary graphs
- We tackle the problem in a more direct way

A Crucial Observation

Protected objects are associated with a particular time point, not an interval

- ▶ The key for time point i is assigned label [i, i]
- ▶ No object is assigned a label [i,j] with i < j

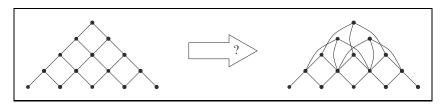
A user only needs to derive keys for labels of the form $\left[i,i\right]$

This assertion is not true in general for authorization graphs

Problem Summary

Given $V = \{[i,j] : 1 \le i \le j \le m\}$, find an edge set $E \subseteq V \times V$ such that

- 1. there exists a path from [i,j] to [k,k] for all $k \in [i,j]$
- 2. |E| is small
- 3. the diameter of the graph (V, E) is small



Cryptographic Access Control

Space-Time Trade-Offs

Temporal Access Control
Binary Decomposition
Multiplicative Decomposition
Related Work

Extensions to Higher Dimensions

Concluding Remarks

The One-Hop Scheme

- ► The one-hop scheme is useful as a base scheme in more complex recursive constructions
 - Every non-"leaf" node is connected to the appropriate "leaf" nodes
 - ▶ The diameter of the graph is 1

The One-Hop Scheme

- The one-hop scheme is useful as a base scheme in more complex recursive constructions
 - Every non-"leaf" node is connected to the appropriate "leaf" nodes
 - ▶ The diameter of the graph is 1
- $e_m e_{m-1} = (t_m 1)$, where $t_m = \frac{1}{2}m(m+1)$



The One-Hop Scheme

- The one-hop scheme is useful as a base scheme in more complex recursive constructions
 - Every non-"leaf" node is connected to the appropriate "leaf" nodes
 - ▶ The diameter of the graph is 1
- $e_m e_{m-1} = (t_m 1)$, where $t_m = \frac{1}{2}m(m+1)$
 - Whence $e_m = \sum_{i=1}^m (t_m 1) = \frac{1}{6} m(m-1)(m+4)$

Two Results

Let T_m denote the set of intervals $\{[i,j]: 1 \leqslant i \leqslant j \leqslant m\}$

Proposition

Let E be an enforcing set of edges for T_m . Then $|E| \ge m(m-1)$.

Two Results

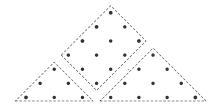
Let T_m denote the set of intervals $\{[i,j]: 1 \leqslant i \leqslant j \leqslant m\}$

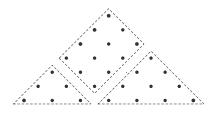
Proposition

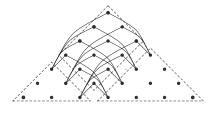
Let E be an enforcing set of edges for T_m . Then $|E| \ge m(m-1)$.

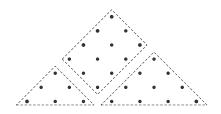
Proposition

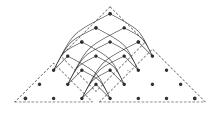
There exists an enforcing set of edges E such that |E| = m(m-1) and the diameter of (T_m, E) is $\lceil \log m \rceil$.

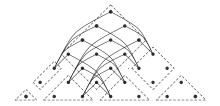


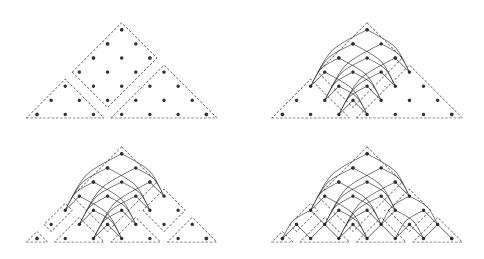












Cryptographic Access Contro

Space-Time Trade-Offs

Temporal Access Control

Binary Decomposition

Multiplicative Decomposition

Related Work

Extensions to Higher Dimensions

Concluding Remarks

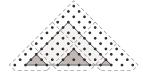
Nodes and Supernodes

If m = ab, then T_m can be regarded as a copy of T_b in which the "supernodes" are copies of T_a and D_a

Nodes and Supernodes

If m=ab, then T_m can be regarded as a copy of T_b in which the "supernodes" are copies of T_a and D_a

▶ Each interval in D_a is the disjoint union of no more than b intervals in copies of T_a



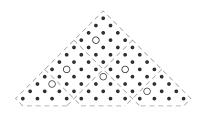
Nodes and Supernodes

If m=ab, then T_m can be regarded as a copy of T_b in which the "supernodes" are copies of T_a and D_a

- ▶ Each interval in D_a is the disjoint union of no more than b intervals in copies of T_a
- ▶ Given an interval in D_a add edges to appropriate nodes in copies of T_a

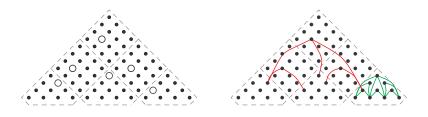
A Two-Hop Scheme

- ▶ Divide T_m into a^2 blocks so that each block contains a single node from each D_a
- ightharpoonup Each node in a block occupies the same relative position within its respective copy of D_a



A Two-Hop Scheme

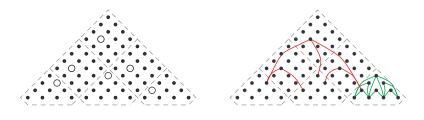
- ▶ Divide T_m into a^2 blocks so that each block contains a single node from each D_a
- ightharpoonup Each node in a block occupies the same relative position within its respective copy of D_a



► Construct a^2 copies of a 1-hop scheme for T_b and a 1-hop scheme for each copy of T_a

A Two-Hop Scheme

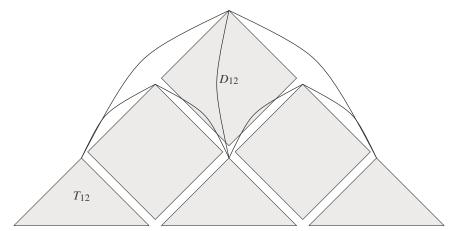
- ▶ Divide T_m into a^2 blocks so that each block contains a single node from each D_a
- ightharpoonup Each node in a block occupies the same relative position within its respective copy of D_a



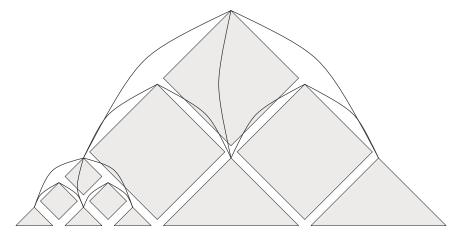
- ► Construct a^2 copies of a 1-hop scheme for T_b and a 1-hop scheme for each copy of T_a
- ▶ In total, the number of edges required is

$$\frac{1}{6}ab(a(b-1)(b+4)+(a-1)(a+4))$$

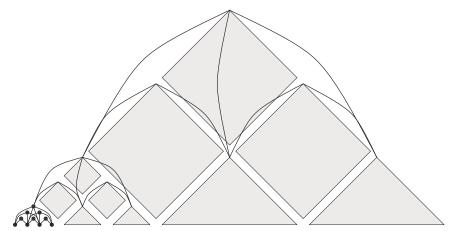
Writing 36 = 3.3.4 we obtain the following decomposition of T_{36}



Writing 36=3.3.4 we obtain the following decomposition of T_{36}



Writing 36=3.3.4 we obtain the following decomposition of T_{36}



Theorem

Let $m = \prod_{i=1}^{d} a_i$, where a_i is an integer and $2 \leqslant a_i \leqslant a_{i+1}$ for all i. Then there exists an enforcing set of edges E such that the diameter of (T_m, E) is d and

$$|E| = \frac{m^2}{6} \sum_{i=1}^d \frac{(a_i - 1)(a_i + 4)}{\pi_i},$$

where $\pi_i = a_1 \dots a_i$.

Some Remarks about the Term $\frac{(a_i-1)(a_i+4)}{\pi_i}$

- Successive terms in the summation are approximately equal when $a_{i+1} \approx a_i^2$ (minimize d)
- ▶ The *i*th term in the summation is minimized when $a_i = 2$ (minimize |E|)
- ▶ Consider m = 36

Factors	<i>E</i>	d
6.6	$36^2 \cdot \frac{175}{108}$	2
4.9	$36^2 \cdot \frac{153}{108}$	2
3.3.4	$36^2 \cdot \frac{124}{108}$	3
2.2.3.3	$36^2 \cdot \frac{109}{108}$	4

Corollary 1

Theorem

... there exists an enforcing set of edges E such that the diameter of (T_m,E) is d and

$$|E| = \frac{m^2}{6} \sum_{i=1}^d \frac{(a_i - 1)(a_i + 4)}{\pi_i}$$

Corollary

If $m=a^d$, then there exists an enforcing edge set E such that $|E|=\frac{1}{6}m(m-1)(a+4)$ and the diameter of (T_m,E) is $d=\log_a m$.

Corollary 2

Theorem

... there exists an enforcing set of edges E such that the diameter of (T_m,E) is d and

$$|E| = \frac{m^2}{6} \sum_{i=1}^d \frac{(a_i - 1)(a_i + 4)}{\pi_i}$$

Corollary

Let $m = 2^{2^d}$ for some integer $d \ge 2$. Then there exists an enforcing edge set E such that

$$|E| < m^2 \left(1 + \frac{1}{6} \log \log m \right)$$

and the diameter of (T_m, E) is $\log \log m$.

Cryptographic Access Control

Space-Time Trade-Offs

Temporal Access Control

Binary Decomposition
Multiplicative Decomposition
Related Work

Extensions to Higher Dimensions

Concluding Remarks

Related Work

M.J. Atallah, M. Blanton, and K.B. Frikken. Incorporating temporal capabilities in existing key management schemes. In *Proceedings of ESORICS 2007.*

M.J. Atallah, M. Blanton, and K.B. Frikken. Key management for non-tree access hierarchies. In *Proceedings of SACMAT 2006*.

A. De Santis, A.L. Ferrara, and B. Masucci.

New constructions for provably-secure time-bound hierarchical key assignment schemes.

Theoretical Computer Science, 2008.

- B. Dushnik and E.W. Miller.
 Partially ordered sets.
 American Journal of Mathematics, 1941.
- M. Thorup.
 Shortcutting planar digraphs.
 Combinatorics, Probability & Computing, 1995.

Comparison

	Public Storage	Derivation
Atallah et al. 2007	$\mathcal{O}\left(m^2\log m\right)$	4
	$\mathcal{O}\left(m^2\right)$	$\mathcal{O}\left(\log^* m\right)$
De Santis <i>et al.</i> , 2008	$\mathcal{O}\left(m^2\right)$	$\mathcal{O}(\log m \log^* m)$
	$\mathcal{O}\left(m^2\log m\right)$	$\mathcal{O}\left(\log^* m\right)$
	$\mathcal{O}\left(m^2\log m\log\log m\right)$	3
Crampton, 2009	m(m-1)	$\lceil \log m \rceil$
	$\frac{1}{6}m(m-1)(\sqrt{m}+4)$	2
Crampton, 2010	$m^2\left(1+\frac{1}{6}\left\lceil\log\log m\right\rceil\right)$	$\lceil \log \log m \rceil$

Practical and Efficient Enforcement

- ► My approach attacks the problem directly and makes use of specific characteristics of the application
- My constructions yield explicit formulae (rather than asymptotic behaviour) for the number of edges and the number of hops required
- ► My schemes can be implemented directly using existing iterative key encrypting schemes

Cryptographic Access Contro

Space-Time Trade-Offs

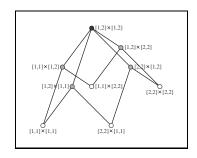
Temporal Access Contro

Extensions to Higher Dimensions

Concluding Remarks

"Geo-Spatial" Access Control Policies

- ▶ Data objects are associated with a point in a two-dimensional grid
- Users are authorized for rectangles covering a set of points in the grid
- The set of rectangles ordered by subset inclusion forms a partially ordered set
- ► The set of nodes in the authorization graph is T_m × T_n
- We will write $T_{m,n}$ to denote $T_m \times T_n$



The Main Results

Theorem

There exists an enforcing set of edges E such that the diameter of the graph $(T_{n,n}, E)$ is bounded by $\lceil \log n \rceil$ and

$$|E| = \frac{1}{3}n^2(n-1)(2n+5) < \frac{8}{3}|T_{n,n}|.$$

Theorem

There exists an enforcing sets of edges E such that the diameter of $(T_{m,km},E)$ is $\log m + \log k = \log km$ and

$$|E| = \frac{1}{6}km^2(3(k-1)m(m+1) + 2(m-1)(2m+5)).$$

Corollary

For $k \geqslant 1$, there exists an enforcing set of edges E such that the diameter of $(T_{m,km},E)$ is log km and

$$|E| < 2|T_{m,km}|\left(1 + \frac{1}{3k}\right) \leqslant \frac{8}{3}|T_{m,km}|.$$

Interval-Based Access Control Policies

Define
$$T_n^k = \underbrace{T_n \times \cdots \times T_n}_{k \text{ times}}$$

Theorem

There exists a set of enforcing edges E for T_n^k such that the diameter of (T_n^k, E) is $\log n$ and

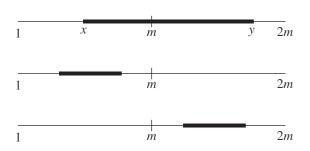
$$|E| = \frac{n^k}{2^k} \sum_{i=1}^k {k \choose i} \frac{(3^i - 1)(n^i - 1)}{2^i - 1}.$$

Corollary

$$|E|$$
 is $\Theta\left(\left(\frac{3}{2}\right)^k \left| T_n^k \right|\right)$.

Consider [x, y], $1 \leqslant x \leqslant y \leqslant 2m$

- \blacktriangleright x and y can be regarded as the "corners" of the interval [x, y]
- ► Each corner can be labelled with a bit, where 0 indicates it is less than or equal to *m* and 1 indicates it is greater than *m*
- ▶ If x and y's labels are the same, then the interval [x, y] is completely contained in a subinterval of length m



 We only need to add (two) edges in the recursive step if the corner labels are different

Hence, the recurrence relation for the number of edges has the form

$$e(2m) = 2a + 2e(m)$$

where a is the number of intervals whose corner labels are different

▶ If the corner labels are different we have m choices for each of x and y, whence $a = m^2$

- ▶ The bottom left-hand and top right-hand corners of a rectangle can each be associated with a pair in $\{0,1\}^2$
- Moreover, if the two corners are represented by (b_1, b_2) and (t_1, t_2) then $b_1 \leqslant t_1$ and $b_2 \leqslant t_2$
- A rectangle straddles 2^d squares of side m, where $0 \le d \le 2$ is the Hamming distance between these corners
 - The Hamming distance is the number of places in which the two pairs differ
 - For d > 0, 2^d is the number of edges required from that rectangle in the recursive step

► The number of choices for the co-ordinates of the corners is also determined by the Hamming distance

$$\left(\frac{1}{2}m(m+1)\right)^{(2-d)}\left(m^2\right)^d$$

- ▶ If $b_i = t_i$ then there are $\frac{1}{2}m(m+1)$ choices for the endpoints of the *i*th interval
- ▶ If $b_i < t_i$ then there are m^2 choices
- ► Finally, the number of corner pairs with Hamming distance d is given by $2^{2-d} \binom{2}{d}$
 - ▶ If $b_i = t_i$ then there are two choices for b_i
 - ▶ If $b_i < t_i$ then there is only once choice for b_i
 - ► There are $\binom{2}{d}$ ways in which we can choose corners with Hamming distance d

We deduce the recurrence relation

$$e(2m) = 4e(m) + \sum_{d=1}^{2} \alpha(d)\beta(d)\gamma(d)$$

- $\alpha(d) = 2^d$ is the number of edges required to connect a rectangle with Hamming distance d to sub-rectangles contained with copies of a square of side m
- ▶ $\beta(d) = \left(\frac{m+1}{2}\right)^{2-d} m^{d+2}$ is the number of rectangles with Hamming distance d
- $\gamma(d)=2^{2-d}\binom{2}{d}$ is the number of ways of fitting rectangles with Hamming distance d in a square of side 2m
- ▶ That is

$$e(2m) = 4e(m) + m^2 \sum_{d=1}^{2} (2m)^d (m+1)^{2-d} {2 \choose d}$$

Sketch Proof: The General Case

- Any "hyperinterval" \mathcal{I} in T_{2m}^k can be represented as the union of at most 2^k hyperintervals in copies of the hypercube $[1, m]^k$
- ▶ \mathcal{I} is associated with two k-tuples in $\{0,1\}^k$, which identify the bottom left-hand and top right-hand "hypercorners" of \mathcal{I}
- ▶ The Hamming distance $0 \le d \le k$ determines the number of:
 - ▶ copies of $[1, m]^k$ that \mathcal{I} straddles (and hence the out-degree of \mathcal{I}), which equals 2^d
 - choices for the co-ordinates of \mathcal{I} , which equals $(\frac{1}{2}m(m+1))^{k-d}(m^2)^d$
 - ▶ choices for hypercubes containing the hypercorners, which equals $2^{k-d} \binom{k}{d}$
- ▶ We deduce the following recurrence relation

$$e(2m, k) = 2^{k}e(m, k) + m^{k}\sum_{d=1}^{k}(2m)^{d}(m+1)^{k-d}\binom{k}{d}$$

Cryptographic Access Contro

Space-Time Trade-Offs

Temporal Access Contro

Extensions to Higher Dimensions

Concluding Remarks

Contributions

- First work in this area to develop techniques tailored for the problem
- First work to provide exact (and better) bounds for the number of edges
- First work to retain the simplicity of existing iterative schemes
 - Other constructions require auxiliary data structures
 - Other constructions require more complex key derivation algorithms
- ► First work to provide explicit constructions for higher dimensions that are natural extensions of those for lower dimensions

References

J. Crampton.

Trade-offs in cryptographic implementations of temporal access control.

In Proceedings of NordSec 2009.

J. Crampton.

Practical constructions for the efficient cryptographic enforcement of interval-based access control policies.

ACM Transactions on Information and System Security, 2011.

J. Crampton.

Time-storage trade-offs for cryptographically-enforced access control. In *Proceedings of ESORICS 2011*.