Beyond eCK: Security against Stronger Adversaries

Michèle Feltz

Joint work with Cas Cremers

Authenticated Key Exchange (AKE) Protocols

- An AKE protocol establishes a shared session-key between two agents using asymmetric (public key) cryptography
 => further communication protected using session-key
- Security analysis in game-based security models:
 - Adversary: full control of the network, may learn long-term secret keys or session-specific values
 - Security goal: Adversary should not be able to distinguish the real session-key from a random one

Perfect Forward Secrecy (PFS)

We are interested in the following security property:

Perfect Forward Secrecy: secrecy of *past* session-keys even if long-term secret keys are compromised

Challenge: Can 2-message AKE protocols achieve PFS even under disclosure of session-specific values and the actor's long-term secret keys?

Diffie-Hellman type AKE protocol

 $G = \langle g \rangle$ cyclic group of prime order q

 $K_{AB} = F(g^{y}, x, PK_{B}, SK_{A})$

 $K_{BA} = F(g^x, y, PK_A, SK_B)$

В

Perfect Forward Secrecy Attack [Krawczyk05]

1. The adversary *E* impersonates *A* to *B*:

F

R

 $K_{AB} = F(g^{y}, x, PK_{B}, SK_{A}) \qquad K_{BA} = F(g^{x}, y, PK_{A}, SK_{B})$

- 2. *E* corrupts A, hence learning SK_A
- 3. *E* can compute $K_{AB} = F(g^y, x, PK_B, SK_A)$

→ Motivated the introduction of weak-PFS!

Can we achieve PFS in 2-message AKE protocols?

- "No 2-message protocol, and in particular HMQV, can provide full perfect forward secrecy." [Krawczyk05]
- "No 2-round AKE protocol can achieve perfect forward secrecy." [LaMaccia-Lauter-Mityagin06]
- No "..., the eCK model is currently regarded as the strongest security model." (weak-PFS) [Lee-Park08]

Can we achieve PFS in 2-message AKE protocols?

- "No 2-message protocol, and in particular HMQV, can provide full perfect forward secrecy." [Krawczyk05]
- "No 2-round AKE protocol can achieve perfect forward secrecy." [LaMaccia-Lauter-Mityagin06]
- No "..., the eCK model is currently regarded as the strongest security model." (weak-PFS) [Lee-Park08]
- Yes, we can! [F-Cremers12]

Contributions of our work

- 1. Formalization of two new game-based security models:
 - eCK^w: precisely modeling weak PFS
 - eCK-PFS: integrating PFS into eCK^w
 → strongest security model so far!
- 2. SIG: Generic transformation from eCK^w to eCK-PFS
- 3. Application of SIG to the NAXOS protocol

→ Goal reached! There is a 2-message KE protocol that achieves PFS in the presence of a strong active adversary!

Concepts for Relating Sessions

Origin-session:	 session where message originates from message not modified or injected by adversary weak-PFS and PFS 	S	m s'
Matching session	 intended communi- cation partners based on matching conversations 	S	$m_1 \rightarrow m_2$

Our New eCK-like Models: eCK^w and eCK-PFS How We Capture weak-PFS and PFS

- **weak-PFS:** compromise of long-term secret keys *after* the end of the test session under the condition that an origin-session for the test session exists
 - passivity of adversary \leftrightarrow existence of origin-session
- **PFS:** compromise of long-term secret keys *after* the end of the test session
 - irrespective of the existence of an origin-session

Our New eCK-like Models: eCK^w and eCK-PFS

Queries:

- Send(*m*, *s*): sends message *m* to session *s*
- LtkRev(A): learns long-term secrets of A
- SesskRev(s): learns session-key of s
- RandRev(s): learns random values of s

A completed session *s* is *fresh* if:

- 1. No SesskRev on session s or on its matching session
- 2. Not both LtkRev(actor) and RandRev(s)
- 3. Not both LtkRev(peer) and RandRev(origin-session of s)
- 4. If there is no origin-session, then no LtkRev(peer) before the end of session s

From eCK^w to eCK-PFS

P, P' two-message AKE protocols

Our SIG Transformation: Design Considerations

- Focus: 2-message Diffie-Hellman (DH) type key exchange protocols (e.g. TS2, HMQV, NAXOS, CMQV,...)
- SIG transformation: Sign your DH exponential g^{z} !
 - enforces existence of origin-session (i.e. prevents active attacks)
 - allows to achieve perfect forward secrecy (PFS)
- Flexibility: possible design trade-offs (e.g. sign identity of peer as well)

SIG: Generic Transformation from eCK^w to eCK-PFS

Let Π be the class of 2-message DH type KE protocols.

 $A: (a, g^a), (sk_A, pk_A)$

B : (b, g^b), (sk_B, pk_B)

 g^x ,Sign_A(g^x [,B])

 g^{y} ,Sign_B($g^{y}[,g^{x},A]$)

e.g. $x \in_R \mathbb{Z}_p$ or x = H(r, a) with $r \in_R \{0, 1\}^k$

Theorem

Assume: the signature scheme is deterministic and unforgeable.

 $P \in \Pi$ secure in eCK^w \Rightarrow SIG(P) secure in eCK-PFS

Application of SIG to NAXOS

Proposition

NAXOS is secure in eCK^w.

Corollary

SIG(*NAXOS*) is secure in eCK-PFS.

$$\begin{array}{ll} A: (a,\underline{A} \coloneqq g^{a}), (sk_{A},pk_{A}) & B: (b,\underline{B} \coloneqq g^{b}), (sk_{B},pk_{B}) \\ r_{A} \in_{R} \{0,1\}^{k} & & \\ X = g^{H_{1}(r_{A},a)} & \xrightarrow{X,Sign_{A}(X[,B])} & & \\ r_{B} \in_{R} \{0,1\}^{k} & & \\ & & & \\ H_{2}(Y^{a},\underline{B}^{H_{1}(r_{A},a)},Y^{H_{1}(r_{A},a)},A,B) & & & H_{2}(\underline{A}^{H_{1}(r_{B},b)},X^{b},X^{H_{1}(r_{B},b)},A,B) \end{array}$$

Is MAC an Alternative?

The MAC transformation [Boyd-GonzalezNieto11]:

- uses a static Diffie-Hellman key as shared information between two agents
- is supposed to provide PFS independently from eCK security

SIG versus MAC transformation:

- eCK-PFS is stronger than eCK^w and PFS separately
- attack on MAC(NAXOS) in eCK-PFS

eCK-PFS stronger than eCK $^{\scriptscriptstyle W}$ and PFS separately

Assume: No origin-session exists for the test session.

Let *t* denote the time when the test session ends.

eCK ^w	PFS		
LtkRev(actor)	LtkRev(actor) and LtkRev(peer)		
before or after t	after t		

 $\rightsquigarrow \phi := \text{LtkRev(actor) before } t$ and LtkRev(peer) after t

- ϕ neither captured in eCK^w nor in PFS
- BUT ϕ captured in eCK-PFS!

Attack on *MAC*(*NAXOS*) in eCK-PFS

Let $S_{AB} = g^{a'b'}$ denote the shared static DH key between A and B.

- 1. The adversary *E* issues the query LtkRev(*B*)
- 2. E impersonates A to B:

$$E \xrightarrow{X,MAC_{S_{AB}}(A,B,X)} B : (b, g^b), (b', g^{b'})$$

$$Y,MAC_{S_{AB}}(B,A,Y)$$

- 3. *E* issues the query LtkRev(*A*)
- 4. *E* can compute the same session-key as *B* does (as in the PFS attack on NAXOS in eCK-PFS)

Conclusion:

- Introduction of new security models eCK^w and eCK-PFS → eCK-PFS strongest security model so far!
- Generic transformation SIG from eCK^w to eCK-PFS
- PFS can be achieved in two-message AKE protocols even in the presence of a very strong adversary!