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Abstract. A salient objective of studying gene regulatory networks
(GRNs) is to identify potential target genes whose perturbations would
lead to effective treatment of diseases. In this paper, we develop two con-
trol methods for GRNs in the context of asynchronous Boolean networks.
Our methods compute a minimal subset of nodes of a given Boolean net-
work, such that temporary or permanent perturbations of these nodes
drive the network from an initial state to a target steady state. The
main advantages of our methods include: (1) temporary and permanent
perturbations can be feasibly conducted with techniques for genetic mod-
ifications in biological experiments; and (2) the minimality of the iden-
tified control sets can reduce the cost of experiments to a great extent.
We apply our methods to several real-life biological networks in silico
to show their efficiency in terms of computation time and their efficacy
with respect to the number of nodes to be perturbed.

1 Introduction

Cellular reprogramming has opened up an unprecedented opportunity for patho-
logical studies and regenerative medicine. It can rejuvenate somatic cells to
pluripotent state, or even convert somatic cells directly to other differentiated
cells [1–3]. Yet the identification of potential target genes and reprogramming
paths remains a major hurdle in in vivo cellular reprogramming [4]. Combina-
torial complexity of potential drug targets and the high cost of experimental
tasks make an experimental approach [5] infeasible. This reinforces the need for
efficient control methods based on mathematical modelling.

Many control methods have been developed in recent years to solve the prob-
lem. However, most of them are not applicable to real-life biological networks
due to different reasons. First, biological networks have a specific control objec-
tive [5, 6]: finding a set of nodes, such that the control of these nodes can drive
the system from a steady state to any other steady state. Biologically admissible
steady states are observable phenotypes [7] and only the control of these states
is meaningful. This rules out the methods based on classical controllability [8].
Second, some modelling frameworks are not suitable for biological networks. For
example, linear dynamical networks fail to capture the non-linearity of biological
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networks, thus rendering control strategies for such networks inapplicable [8–10].
Lack of biological information prohibits the modelling of biological systems with
networks of ordinary differential equations (ODEs) [11]. This further limits the
application of control methods based on ODE networks [12, 13]. Compared to the
above modelling frameworks, Boolean networks (BNs) are well suited to model
discrete and nonlinear dynamical biological systems. In BNs, genes are modelled
as binary variables, being either ‘expressed’ or ‘not expressed’ and activation/in-
hibition regulations between genes are described by Boolean functions. The dy-
namics of a BN is determined by Boolean functions together with the update
mode, either synchronous or asynchronous. The steady states of biological sys-
tems are described as attractors in BNs, to one of which the network eventually
settles down. Recently, Kim et al. [14] and Zhao et al. [15] developed methods to
drive a synchronous BN towards a desired attractor. However, the synchronous
update mode is considered less realistic than the asynchronous update mode as
only the latter allows for different time-scales of biological processes [16]. For
asynchronous BNs, Zañudo et al. [6] developed a promising method to identify
attractors and drug targets based on stable motifs. However, this method does
not guarantee the minimality of perturbations.

Owing to various shortcomings of the existing control methods, we aim to
develop a minimal and realistic control strategy for the control of asynchronous
BNs. Given a BN, a source state and a target attractor, our idea is to identify
an exact minimal set C of nodes of the BN, such that by perturbing the nodes in
C, the dynamics of the BN is driven from the source state to the desired target
attractor. One key factor to make this strategy realistic is to adopt physically
admissible and experimentally feasible perturbations [17]. Rapid development
of biomolecular techniques enables us to perturb expressions of nodes for dif-
ferent classes of time periods (instantaneously, temporarily or permanently) in
both directions: from ‘expressed’ to ‘not expressed’ and/or from ‘not expressed’
to ‘expressed’ [18]. In [19], we developed such a method for perturbations that
are instantaneous and showed that it is well suited for certain biological net-
works [17]. In this work, we develop methods for identifying a minimal set C
of control nodes for asynchronous BNs whose perturbations can be long-term
(temporary) or even permanent. The application of control C reshapes the BN
to a new one, where the Boolean functions of the nodes in C are fixed to either
ON or OFF. Permanent control leads to a permanent shift of the dynamics,
whereas, for the temporary control, the perturbations of the identified set C of
nodes are maintained for sufficient time until the network reaches a state, from
which there only exist paths towards the target in the original BN.

We have implemented our temporary and permanent control methods and
evaluated them on a variety of real-life biological networks modelled as BNs.
We show that: (1) both temporary and permanent control sets can be efficiently
computed on BNs that model real-life GRNs; (2) our methods not only capture
the essential genes identified in the literature (e.g, see [20]), but also give other
solutions for potential applications; (3) both methods can greatly reduce the
number of control nodes compared to the instantaneous control [19]. The control
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nodes computed by the two methods form a relatively small set even for large-
scale networks. This agrees with the empirical findings that the control of a few
nodes is sufficient to control cell fate determination processes [21, 22].

2 Preliminaries

In this section, we give preliminary notions of Boolean networks in Sections 2.1-
2.3, and precisely formulate our control problems in Section 2.4.

2.1 Boolean networks

Let [n] denote the set of positive integers {1, 2, . . . , n}. A Boolean network (BN)
describes elements of a dynamical system with binary-valued nodes and interac-
tions between elements with Boolean functions. It is formally defined as:

Definition 1 (Boolean networks). A Boolean network is a tuple BN = (x, f)
where x = {x1, x2, . . . , xn} such that each xi, i ∈ [n] is a Boolean variable and
f = {f1, f2, . . . , fn} is a set of Boolean functions over x.

A Boolean network BN = (x, f) has an associated directed graph GBN =
(V,E), where V = {v1, v2 . . . , vn} is the set of vertices or nodes and for every
i, j ∈ [n] there is a directed edge from vj to vi if and only if fi depends on xj .
For the rest of the exposition, we assume that an arbitrary but fixed network
BN = (x, f) of n variables is given to us. For all occurrences of xi and fi, we
assume xi and fi are elements of x and f resp.

A state s of BN is an element in {0, 1}n. Let S be the set of states of BN.
For any state s = (s1, s2, . . . , sn), and for every i ∈ [n], the value of si, often
denoted as s[i], represents the value that the variable xi takes when the BN ‘is in
state s’. For some i ∈ [n], suppose fi depends on xi1 , xi2 , . . . , xik . Then fi(s) will
denote the value fi(s[i1], s[i2], . . . , s[ik]). For two states s, s′ ∈ S, the Hamming
distance between s and s′ will be denoted as hd(s, s′) and arg hd(s, s′) ⊆ [n]
will denote the set of indices in which s and s′ differ. It will be convenient to
view arg hd(s, s′) as a tuple of two disjoint sets (1, 0), where s′[i] = 1 if i ∈ 1

and s′[i] = 0 if i ∈ 0. For a state s and a subset S′ ⊆ S, the Hamming distance
between s and S′ is defined as the minimum of the Hamming distances between s
and all the states in S′, i.e. hd(s,S′) = mins′∈S′ hd(s, s′). Let arg hd(s,S′) denote
the set of tuples, such that (1, 0) ∈ arg hd(s,S′) if and only if 1 ∪ 0 is a set of
indices of the variables that realise the minimum Hamming distance.

2.2 Dynamics of Boolean networks

We assume that the Boolean network evolves in discrete time steps. It starts
initially in a state s0 and its state changes in every time step according to the
update functions f . The updating may happen in various ways [23, 24]. Every
such way of updating gives rise to a different dynamics for the network. In this
work, we shall be interested primarily in the asynchronous update mode.
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Fig. 1: The transition systems of BN.

Definition 2 (Asynchronous dynamics of Boolean networks). Suppose
s0 ∈ S is an initial state of BN. The asynchronous evolution of BN is a function
ξBN : N→ ℘(S) such that ξBN(0) = {s0} and for every j ≥ 0, if s ∈ ξBN(j) then
s′ ∈ ξBN(j+1) is a possible next state of s iff either hd(s, s′) = 1 and s′[i] = fi(s)
where s′[i] = 1− s[i] or hd(s, s′) = 0 and there exists i such that s′[i] = fi(s).

Note that the asynchronous dynamics is non-deterministic – the value of
exactly one variable is updated in a single time-step whose index is not known
in advance. Henceforth, when we talk about the dynamics of BN, we shall mean
the asynchronous dynamics as defined above. The dynamics of a Boolean network
can be represented as a state transition graph or a transition system (TS).

Definition 3 (Transition system of BN). The transition system of BN, de-
noted as TSBN is a tuple (S,→BN), where the vertices are the set of states S and
for any two states s and s′ there is a directed edge from s to s′, denoted s→BN s′

iff s′ is a possible next state of s according to the asynchronous evolution function
ξBN of BN.

Example 1. Consider a network BN = (x, f), where x = {x1, x2, x3}, f =
{f1, f2, f3}, and f1 = ((¬x3)∧x1)∨x2, f2 = ((¬x3)∧x2)∨ ((¬x3)∧x1), f3 = 0.
The transition system of the network TSBN is given in Fig. 1a.

Definition 4 (Control). A control C is a tuple (1, 0) where 1, 0 ⊆ [n], 1 and
0 are mutually disjoint (possibly empty) set of indices of variables of BN. The
size of control C is defined as size(C) = |1| + |0|. Given two states s, s′ ∈ S, let
Cs→s′ = (1, 0), where 1 = {i ∈ [n] | s′[i] = 1 = 1− s[i]} and 0 = {i ∈ [n] | s′[i] =
0 = 1− s[i]}.

Intuitively, 1 and 0 represent the indices of variables of BN whose values are
held fixed to 1 and 0 respectively under the control C. For Cs→s′ , 1 ∪ 0 are
the set of indices in which s and s′ differ, out of which 1 and 0 are the indices
which have a value 1 and 0 in s′, respectively. The application of a control C to
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BN = (x, f) has the effect of reducing the state space of BN to those which have
the values of the variables in 1 and 0 set respectively to 1 and 0 and modifying
the update functions accordingly. This results in a new Boolean network derived
from BN defined as follows.

Definition 5 (BN under control). Let C = (1, 0) be a control. Then the
Boolean network BN under control C, denoted BN|C, is defined as a tuple BN|C =

(x̂, f̂) where the elements of x̂ and f̂ are given as, for all i ∈ [n]:

– x̂i = 1 if i ∈ 1, x̂i = 0 if i ∈ 0, and x̂i = xi otherwise.
– f̂i = 1 if i ∈ 1, f̂i = 0 if i ∈ 0, and f̂i = fi otherwise.

The state space of BN|C, denoted S|C is derived by fixing the values of the
variables in the set C to their respective values and is defined as S|C = {s ∈
S | s[i] = 1, i ∈ 1 and s[j] = 0, j ∈ 0}. Note that S|C ⊆ S. For any subset
S′ of S we let S′|C = S′ ∩ S|C. The asynchronous dynamics and the transition
system of BN|C are defined similarly to Definition 2 and Definition 3 by replacing

BN = (x, f) with BN|C = (x̂, f̂). We omit the definitions to avoid duplications.

Definition 6 (Application and release of control). Let s ∈ S be a state
of BN and let C = (1, 0) be a control. The instantaneous application or 0-step
application of C to s results in a state s′ such that s′[i] = 1 for all i ∈ 1, s′[j] = 0

for all j ∈ 0 and s′[k] = s[k] otherwise. We will often denote this as s
C∼ s′ and

denote s′ as C(s). The application of C to s for t ≥ 1 time steps results in a
sequence s0, s1, s2, . . . , st, where s0 = C(s) and for every k ∈ [t], sk ∈ ξBN|C(sk−1).
When t→∞, we shall call it a permanent application of C to s or a permanent
control of s.

Suppose BN under control C is in state s ∈ S|C and has been evolving ac-
cording to ξBN|C . The release of control at s is performed instantaneously and it

restores the update dynamics to ξBN. We often denote it as s
C−1

∼ s→BN . . .

Thus suppose BN starts evolving from an initial state s0 ∈ S and after t1
steps a control C is applied to it. Suppose the control lasts for t2 steps and then
it is released and then BN goes back to evolving according to its original update
dynamics. This will result in a sequence that can be represented as:

s0 →BN s1 →BN . . .→BN st1︸ ︷︷ ︸
t1 steps

C∼ s′0 →BN|C s′1 →BN|C . . .→BN|C s′t2︸ ︷︷ ︸
t2 steps under control C

C−1

∼ s′′0 →BN s′′1 →BN . . .

Intuitively, on the application of control C for t2 steps, the behaviour of BN
is given according to TSBN|C for t2 time steps. After that, when C is released,
the behaviour goes back to TSBN. The release of C does not change the value of
any variable, thus s′′0 = s′t2 .

Example 2. For Example 1, given a control C = (1, 0), where 1 = {2} and
0 = {3}, the transition system TSBN|C of BN|C is described in Fig. 1b.
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2.3 Attractors and basins

In what follows we shall use the generic notation TS to represent either the full
transition system TSBN of BN or the transition system TSBN|C of BN under a
control C. Similarly we let ‘→’ stand for either→BN or→BN|C . We define several
notions on TS below which can be interpreted both on TSBN and TSBN|C . The
state space, transitions etc. will correspond either to TSBN or TSBN|C (or both)
depending on the context.

A path ρ from a state s to a state s′ is a (possibly empty) sequence of
transitions from s to s′ in TS. Thus, ρ = s0 → s1 → . . .→ sk, where s0 = s and
sk = s′. A path from a state s to a subset S′ of S is a path from s to any state
s′ ∈ S′. An infinite path ρ from s is an infinite sequence of transitions from s.
Let Path∞(s) denote the set of infinite paths from s. Let ρ = s0 → s1 → . . . be
an infinite path from s0. A state s ∈ S appears infinitely often in ρ if for every
i ≥ 0 there exits j ≥ i such that sj = s. s appears finitely often in ρ otherwise.

Definition 7 (Fairness). Let s0 ∈ S. An infinite path ρ = s0 → s1 → . . . is
said to be unfair if for every state s that occurs infinitely often in ρ, there exists
a possible next state s′ of s which occurs only finitely often in ρ. ρ is said to be
fair otherwise.

It is important to impose the restriction of fairness because otherwise, the
TSBN would have pseudo-attractors (defined shortly) which would not corre-
spond to any meaningful phenotypes of the GRN being modelled. Fairness en-
sures that the attractors of TS are exactly the ones that are experimentally
observed. Henceforth, we shall assume that the evolution of BN is always fair,
and hence consider only fair paths. Therefore, let Path∞(s) denote the set of all
infinite fair paths from a state s ∈ S.

For any state s ∈ S, let preTS(s) = {s′ ∈ S | s′ → s} and let postTS(s) = {s′ ∈
S | s → s′} where →∈ {→BN,→BN|C} depending on the context. preTS(s) con-
tains all the states that can reach s by performing a single transition in TS and
postTS(s) contains all the states that can be reached from s by a single transition
in TS. preTS(s) and postTS(s) are often called the set of predecessors and succes-
sors of s. Note that, by definition, hd(s, preTS(s)) ≤ 1 and hd(s, postTS(s)) ≤ 1.
preTS and postTS can be lifted to a subset S′ of S as: preTS(S′) =

⋃
s∈S′ preTS(s)

and postTS(S′) =
⋃

s∈S′ postTS(s). We define prei+1
TS (S′) = preTS(preiTS(S′)) and

posti+1
TS (S′) = postTS(postiTS(S′)) where pre0TS(S′) = post0TS(S′) = S′. For a state

s ∈ S, reachTS(s) denotes the set of states s′ such that there is a path from s to
s′ in TS and can be defined as the fixpoint of the successor operation which is
often denoted as post∗TS. Thus, reachTS(s) = post∗TS(s).

Definition 8 (Attractor). An attractor A of TS is a minimal non-empty sub-
set of states of S such that for every s ∈ A, reachTS(s) = A.

Any state which is not part of an attractor is a transient state. An attractor
A of TS is said to be reachable from a state s if reachTS(s) ∩ A 6= ∅. Attractors
represent the stable behaviour of the BN according to the dynamics. The network
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starting at any initial state s0 ∈ S will eventually end up in one of the attractors
of TS and remain there forever unless perturbed.

Observation 1 Any attractor of TS is a bottom strongly connected component
of TS.

Let S′ be a subset of states of S. We define subsets of states of S called the
weak and strong basins of S′, denoted as basWTS(S′) and basSTS(S′), respectively.

Definition 9 (Basin). Let S′ ⊆ S.

– Weak basin: The weak basin of S′ with respect to TS, is defined as basWTS(S′) =
{s ∈ S | reachTS(s)∩S′ 6= ∅} which equals the fixpoint of the predecessor op-
eration on S′ and is often denoted as pre∗TS(S′). Thus, basWTS(S′) = pre∗TS(S′).
In other words, since all paths in Path∞(s) are fair,

basWTS(S′) = {s ∈ S | ∃ρ = s0 → s1 → . . . ∈ Path∞(s),∃j ≥ 0, sj ∈ S′}

– Strong basin: The strong basin of S′ with respect to TS, is defined as

basSTS(S′) = {s ∈ S | ∀ρ = s0 → s1 → . . . ∈ Path∞(s),∃j ≥ 0, sj ∈ S′}

We say that a path ρ = s0 → s1 → . . . eventually reaches S′ if there exits
j ≥ 0 such that sj ∈ S′. Intuitively, the weak basin of S′ consists of all states
from which there is at least one path to S′, whereas the strong basin of S′

consists of all states from which all paths eventually reach S′. Clearly thus,
basSTS(S′) ⊆ basWTS(S′). If S′ is an attractor A (say), basWTS(A) and basSTS(A) will
also be referred to as weak and strong basins of attractions with respect to A.
Thus the weak basin of attraction of A is the set of all states s from which there
is a path to A. It is possible that there are paths from s to some other attractor
A′ 6= A. However, the notion of a strong basin does not allow this. Thus, it is
easy to see that,

Observation 2 If s ∈ basSTS(A) then s /∈ basWTS(A′) for any other attractor A′.
Therefore, basSTS(A) = basWTS(A) \ (

⋃
A′ bas

W
TS(A′)) where the union is over all

attractors A′ 6= A of TS.

Note that if S′ is an attractor A, then if ρ eventually reaches A, it gets stuck
in A forever. That is, for every i ≥ 0, si ∈ A implies sj ∈ A for all j > i.
This follows directly from Definition 8. We need the notion of strong basin to
ensure that every fair sequence under a given update dynamics always reaches
the target attractor. The following observation will be crucial for the control
algorithms developed in this paper.

Observation 3 Let s ∈ S and S′ ⊆ S. Every path ρ ∈ Path∞(s)

1. possibly eventually reaches S′ if and only if s ∈ basWTS(S′),
2. always eventually reaches S′ if and only if s ∈ basSTS(S′).
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Example 3. To continue with the example given in Example 1, TSBN has two
attractors A1 = {(110)} and A2 = {(000)} shown by dark grey rectangles in
Fig. 1a. The weak basin and the strong basin of A2 are shown by the dashed
and solid rectangles, respectively. The state s1 = {(011)} is in the weak basin
basWTS|BN(A2) but not in the strong basin basSTS|BN(A2) of A2 as there exist paths
from s1 to the other attractor A1. Starting from the state s1, BN can reach either
A1 or A2 eventually. The state s2 = {(001)} is in the strong basin basSTS|BN(A2)
of A2. Starting from s2, BN always eventually reaches A2.

2.4 The control problem

As described in the introduction (Section 1), the attractors of a Boolean network
represent the cellular phenotypes. Some of these attractors may be diseased,
weak or undesirable while others are healthy and desirable. Curing a disease is
thus, in effect, moving the dynamics of the network from an undesired ‘source’
attractor to a desired ‘target’ attractor.

This can be achieved by applying control (as defined in Section 2.2) to the
network. There can be various strategies of applying such a control. These can be
broadly classified based on the number of parameters of the network controlled
at the same time and the amount of time the control is applied. In terms of the
number of parameters controlled at the same time, we have: (1) simultaneous
control – the perturbation is applied to all the parameters at once; and (2)
sequential control – the perturbation is applied to the required parameters over
a sequence of steps. Based on the amount of time that the control is applied,
we have: (a) permanent control – the control is applied for all the following time
steps, i.e., the parameters are changed forever; and (b) temporary control – the
control is applied for a finite (possibly zero) number of steps and then removed.

In this work we shall be interested in simultaneous control that is applied both
temporarily and permanently. Moreover, we aim to compute the exact minimum
number of parameters needed to be controlled in each case. The control problems
that we shall deal with in this work are defined as follows.

Definition 10 (Control problems). Given a source state s ∈ S and an at-
tractor A of TSBN of BN, a:

1. Permanent control: is a control C = (1, 0) such that the dynamics of BN
always eventually reaches A on the permanent application of C to s. (Here we
assume implicitly that A is also an attractor of the transition system under
control TSBN|C .)

2. Temporary control: is a control C = (1, 0) such that there exists a t0 ≥ 0
such that for all t ≥ t0, the dynamics of BN always eventually reaches A on
the application of C to s for t steps.

In addition, if in each case C is minimal, in the sense that, for every control C′

that achieves one of the above objectives, size(C) ≤ size(C′), we call C a minimal
permanent (resp. temporary) control. The control problems are then, given a
source state s ∈ S and an attractor A of TSBN of BN, find a minimal permanent
or temporary control.
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Note that the constraint of minimality in the above definition makes the
problems non-trivial. Otherwise, one can simply choose a control C such that
C(s) ∈ A in each case. In [19, 25], we developed a method for the efficient min-
imal simultaneous control of Boolean networks, where given a source state s
and an attractor of TSBN of BN the control C is applied simultaneously and
instantaneously to s so that the dynamics of BN eventually reaches A and C is
minimal. Such a control is a special case of the temporary control defined above
with t = 0. Since the minimal simultaneous control problem of [19, 25] is com-
putationally difficult (PSPACE-hard), the control problems that we study here,
defined above, are also computationally difficult (at least PSPACE-hard). Thus,
efficient algorithms to solve these problems are highly unlikely. However, we
showed in [19, 25], that if the BNs are structurally well-behaved (e.g., the graph
of the BN has small strongly connected components (SCCs), with a small num-
ber of interdependencies between the SCCs etc.), we can have relatively efficient
methods to compute the attractors and basins of such BNs. Since it is known
that real-life BNs corresponding to GRNs are reasonably well-behaved, this led
us to develop efficient algorithms for computing the weak and strong basins of
desired target attractors of such BNs by decomposing the BNs based on the
SCCs of their graphs. The algorithms we develop here will crucially use the pro-
cedures developed in [19, 25] for the computation of the weak and strong basins
of the target attractors, denoted as Comp WB(A) and Comp SB(A) [19, 25],
respectively. These then applied to real-life networks can result in a significant
level of efficiency as will be demonstrated later.

3 Results

In this section, we develop algorithms to solve the control problems described
in Definition 10. These algorithms are based on the key observation made in
Observation 3. Indeed, given a source state s and a target attractor A of TSBN
of BN, if after the application of a control C to s, the resulting state C(s) lies
in the strong basin of A w.r.t. the transition system under control, TSBN|C , then
the dynamics will always eventually reach A. One needs to be careful though
as the attractors and their structure in TSBN|C might be different from TSBN.
However, we note that the application of C to TS does not create any additional
edges except for self loops.

Lemma 1. Let C be a control. If s →BN|C s′ is in TSBN|C then s 6= s′ implies
s→BN s′ is in TSBN.

3.1 Permanent control

We now develop an algorithm to solve the problem of permanent control. For

the sake of simplicity, we use bas
S(W )
BN (.) and bas

S(W )
BN|C (.) to represent bas

S(W )
TSBN

(.)

and bas
S(W )
TSBN|C

(.), respectively. The following proposition will be useful.
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Proposition 1. Let C be a control and A be an attractor of TSBN such that A is
also an attractor of TSBN|C . For any s ∈ S, if s ∈ basWBN|C(A) then s ∈ basWBN(A).

The converse of Proposition 1 may not hold as shown by the following example.

Example 4. Let C1 = {11, 01} with 11 = {3} and 01 = ∅ and C2 = {12, 02}
with 12 = ∅ and 02 = {1} be two controls of the BN of Example 1. The original
transition system TSBN and the two transition systems under control TSBN|C1
and TSBN|C2 are given in Fig. 1. The application of C1 fixes f3 to 1 and neither
of the attractors is preserved in TSBN|C1 . The application of C2 fixes f1 to 0. In
TSBN|C2 , the attractor A2 = {(000)} is the attractor of TSBN and TSBN|C2 . The

state s = {(111)} is in basWBN(A2) but not in basWBN|C2 (A2).

The intuition for the algorithm for the problem of permanent control that we
shall develop in this section is as follows. Suppose s ∈ S is an initial state and
A is the target attractor of TSBN that we want the dynamics of BN to always
eventually reach. The following is a straightforward corollary of Observation 3.

Corollary 1. A control C is a permanent control from s to A iff A is an attrac-
tor of TSBN|C and C(s) ∈ basSBN|C(A).

Thus, we want to find a control C such that the condition C(s) ∈ basSBN|C(A) is
satisfied. Now, since we want the control C to be minimal, we proceed as follows.
We start with a state s′ ∈ basWBN(A) that has the minimal Hamming distance with
s. We first check if A is an attractor of TSBN|

Cs→s′
since otherwise, Cs→s′ cannot

be a permanent control (by definition). If A is indeed an attractor of TSBN|
Cs→s′

,

we check if s′ ∈ basSBN|
Cs→s′

(A). If so, we are done. Otherwise, we remove s′

from basWBN(A) and select a state s′′ from (basWBN(A) \ {s′}) having the minimal
Hamming distance with s. We repeat the same procedure this time with Cs→s′′ .
We iterate till we find a state s∗ ∈ basWBN(A) such that s∗ ∈ basSBN|

Cs→s∗
(A).

The procedure described above, in the worst case, explores all possible states
in basWTSBN

(A). By Proposition 1 we know that for any control C, basWBN|C(A) ⊆
basWBN(A). Thus, it is enough to explore only the states in basWBN(A) and it will
eventually find the required control. Cs→s∗ is then the required minimal perma-
nent control. Algorithm 1 describes this procedure in pseudo-code.

3.2 Temporary control

The algorithm for computing a minimal temporary control is slightly more in-
volved than that for computing a minimal permanent control developed in Sec-
tion 3.1. We first prove the following proposition with the help of Lemma 1.

Proposition 2. Let A be an attractor of TSBN and C be any control.

1. For any state s ∈ basSBN(A), reachTSBN
(s) ⊆ basSBN(A).

2. For any state s ∈ (basSBN(A)|C), reachTSBN|C
(s) ⊆ (basSBN(A)|C).
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Algorithm 1 Minimal permanent control

1: procedure Comp Perm Control(G, f , s, A) % s: the source state; A: the target
2: WB :=Comp WB(A, f) % the weak basin of A in TSBN [19, 25]
3: isMin := false
4: while isMin = false and WB 6= ∅ do
5: C ∈ arg hd(s,WB), s′ := C(s) % a possible minimal control from s to A
6: if {s′}|C = A|C then % A is preserved in TSBN|C
7: fC :=Comp Fn contr(f ,C) % f in BN|C (see Algorithm 2)
8: SBC :=Comp SB(A, fC) % the strong basin of A in TSBN|C [19, 25]
9: if s′ ∈ SBC then

10: isMin := true
11: if isMin = false then
12: WB := WB \ {s′}
13: return C

Algorithm 2 Helper functions

1: procedure Comp Fn contr(f ,C) %
C = (1, 0)

2: fC := f
3: for i ∈ 1 do
4: fC[i] := 1

5: for i ∈ 0 do
6: fC[i] := 0

7: return fC
8:
9:

10: procedureComp State contr(S,C)
11: S|C := S
12: for s ∈ S do
13: for i ∈ 1 do
14: if s[i] 6= 1 then
15: S|C := S|C \ {s}
16: for j ∈ 0 do
17: if s[j] 6= 0 then
18: S|C := S|C \ {s}
19: return SC

Using Observation 3 and Proposition 2, we can prove the following theorem.

Theorem 4. Let s ∈ S be a source state and A be the target attractor of TSBN.
A control C is a temporary control from s to A if and only if basSBN(A)|C 6= ∅
and C(s) ∈ basSBN|C(basSBN(A)|C).

Theorem 4 forms the basis for our algorithm for computing the temporary
control C, given a source state s and a target attractor A. Intuitively, on the
application of C, we want the dynamics to move to a state C(s) which is in the
strong basin (w.r.t the restricted transition system TSBN|C) of the strong basin
(w.r.t the original transition system TSBN) of the target attractor A, restricted
to states in S|C. Then if we hold the control C for long enough, the dynamics
will eventually reach the strong basin of A in TSBN. By Proposition 2, we know
that once in the strong basin, the dynamics cannot escape it. This means that
finally when the control C is released, the dynamics is in the strong basin of A
and hence will eventually reach A which is the target.

How can we ensure that we indeed compute a temporary control C that
is minimal? Once again, we proceed as before. We start with a state s′ ∈



12 Su et al.

Algorithm 3 Minimal temporary control

1: procedure Comp Temp Control(G, f , s, A) % s: the source state; A: the target
2: WB :=Comp WB(A, f) % the weak basin of A in TSBN

3: SB :=Comp SB(A, f) % the strong basin of A in TSBN

4: isMin := false
5: while isMin = false and WB 6= ∅ do
6: C ∈ arg hd(s,WB), s′ = C(s) % a possible minimal control from s to A
7: if s′ ∈ SB then
8: isMin := true % instantaneous perturbation
9: else

10: fC :=Comp Fn contr(f ,C) % f in BN|C (see Algorithm 2)
11: SB|C :=Comp State contr(SB,C) % SB in TSBN|C (see Algorithm 2)
12: if SB|C 6= ∅ then
13: basSBN|C(SB|C) :=Comp SB(SB|C, fC)

14: if s′ ∈ basSBN|C(SB|C) then
15: isMin := true
16: if isMin = false then
17: WB := WB \ {s′}
18: return C

basWBN(A) that has the minimal Hamming distance with s. We check if s′ ∈
basSBN|

Cs→s′
(basSBN(A)|Cs→s′ ). If so, we are done. Otherwise, we remove s′ from

basWBN(A) and select a state s′′ from (basWBN(A) \ {s′}) having the minimal Ham-
ming distance with s. We repeat the same procedure this time with Cs→s′′ . We it-
erate till we find a state s∗ ∈ basWBN(A) such that s∗ ∈ basSBN|

Cs→s∗
(basSBN(A)|Cs→s∗ ).

Once again, by Proposition 1 we know that for any control C, basWBN|C(A) ⊆
basWBN(A). Thus, it is enough to explore only the states in basWBN(A) and it will
eventually find the required control. Cs→s∗ is then the required minimal tempo-
rary control. Algorithm 3 describes this procedure in pseudo-code.

Notice that the amount of time for the application of C depends on the
specific system and the detailed perturbations. Biologists can determine when
to release the control case by case based on experimental settings. As long as the
control is released in finite steps, holding it longer will not affect its effectiveness.

Constraints on the control sets. Constraints encoding practical requirements
can eliminate perturbations of certain nodes, for instance essential genes for cell
survival [26]. We implement the constraints by slightly modifying our algorithms
as follows. Let R1,R0 be two sets of indices of nodes, where the state of a node
with index i ∈ R1(R0) cannot be perturbed to 0 (1). The above constraints can
be realised by removing the states {s′ ∈ basWBN(A)| for i ∈ R1, s

′[i] = 0 or for j ∈
R0, s

′[j] = 1} from basWBN(A) before the main loop of Algorithms 1 and 3.
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network
# #

#A
range of |C| time (seconds)

nodes edges |CI| |CT| |CP| TI TT TP

myeloid 11 30 6 1-5 1-3 1-3 0.015 0.059 0.056
cardiac 15 39 6 1-9 1-4 1-4 0.233 0.885 0.842
ERBB 20 52 3 1-9 1-3 1-3 0.054 0.179 0.251
tumour 32 158 9 1-10 1-4 1-4 6.726 35.207 34.065
PC12 33 62 7 1-11 1-4 1-4 0.394 2.150 2.634
hematopoietic 33 88 5 1-13 1-3 1-3 1.749 11.356 16.080
MAPK r3 53 105 20 1-19 1-5 1-5 112.429 213.111 230.871
HGF 66 103 18 1-31 1-5 1-5 234.373 441.541 417.897
bortezomib 67 135 5 1-21 1-3 1-4 46.062 145.111 106.268
CD4+ 188 380 12 1-5 1-4 1-4 8536.420 15930.900 16007.500

Table 1: An overview of the networks and the evaluation results. I, T and P stand
for the instantaneous, temporary and permanent controls, respectively.

A1 A2 A3 A4 A5 A6

|CI| |CT| |CP| |CI| |CT| |CP| |CI| |CT| |CP| |CI| |CT| |CP| |CI| |CT| |CP| |CI| |CT| |CP|
A1 − − − 1 1 1 1 1 1 2 2 2 1 1 1 2 2 2
A2 2 1 1 − − − 4 2 3 1 1 1 1 1 1 2 2 2
A3 1 1 1 2 2 2 − − − 1 1 1 2 2 2 1 1 1
A4 4 2 2 1 1 1 3 1 2 − − − 2 2 2 1 1 1
A5 8 3 3 6 2 2 9 4 4 6 3 3 − − − 1 1 1
A6 8 4 4 7 3 3 6 2 2 4 2 2 1 1 1 − − −
Table 2: The number of perturbations computed for the cardiac network.

4 Case Studies

To demonstrate the efficacy and efficiency of our control methods, we apply our
minimal temporary and permanent controls (Algorithms 1 and 3) to 10 biological
networks [20, 27–33, 29, 34]. The results are compared with the minimal instanta-
neous control method developed in [19]. These three algorithms are implemented
as part of the software ASSA-PBN [23]. All the experiments are performed on a
computer with a CPU of Intel Core i7 @3.1 GHz and 8 GB of DDR3 RAM. An
overview of the networks is given in Table 1.

Efficiency. We compute a minimal control C with the three methods for each
pair of source and target attractors. The total execution time is summarised
in the last three columns of Table 1. We do not give detailed time costs for
each pair due to the page limit. The temporary and permanent controls have
similar performance in terms of efficiency. Both of them are less efficient than the
instantaneous control as it may take several iterations to compute a valid control
set (see Algorithms 1 and 3). Despite that, both methods are still very efficient.
For instance, for the CD4+ T-cell network, the computation time for each case
is in the range of (38-212), (84-581) and (63-718) seconds for the instantaneous,
temporary and permanent controls, respectively.

Efficacy. The number of perturbations are summarised in Table 1. By extending
the application time of control, the number of perturbations can be greatly



14 Su et al.

Megakaryocyte Erythrocyte Granulocyte Monocyte

− {EKLF} {C/EBPα, PU1, Gfi1} {EgrNab, C/EBPα, GATA1}
Megakaryocyte {Fli1} {C/EBPα, Gfi1,

GATA1}
{EgrNab, C/EBPα, PU1}

{EKLF} − {C/EBPα, PU1, Gfi1} {EgrNab, C/EBPα, GATA1}
Erythrocyte {Fli1} {C/EBPα, Gfi1,

GATA1}
{EgrNab, C/EBPα, PU1}

{GATA2, Fli1} {GATA2, EKLF}
−

{EgrNab}
{GATA1, Fli1} {GATA1, EKLF} {Gfi1}Granulocyte
{Fli1, PU1}

{GATA2, Fli1} {GATA2, EKLF} {PU1}
−{GATA1, Fli1} {GATA1, EKLF} {Gfi1},{cJun},{EgrNab}Monocyte

{Fli1, PU1}
Table 3: The control sets for the myeloid differentiation network computed by
the temporary and permanent controls. The sets in grey are only required by
the temporary control. Underlined genes are switched to OFF, otherwise to ON.

reduced, which in turn reduces the cost of biological experiments. Especially for
the model of bortezomib responses, the number of perturbations can be reduced
from 21 to 3 and 4 by the temporary and permanent controls, respectively.

Table 2 summarises the number of perturbations for the cardiac network.
The first column and the first row represent the source and target attractors,
respectively. For most cases, the temporary and permanent controls require the
same number of perturbations, while the temporary control can further reduce
it for a few cases (e.g., A2 → A3 and A4 → A3). In general, the instantaneous
control needs to control more nodes to guarantee the reachability.

We take the myeloid differentiation network as an example to compare our
results with the perturbations found in [20]. Four of the six attractors of this net-
work correspond to megakaryocytes, erythrocytes, granulocytes or monocytes.
Table 3 gives the minimal control sets computed by our temporary and perma-
nent controls for these four attractors. In general, our results are consistent with
the conclusions of [20].

1. Reprogramming of EKLF or Fli1 can achieve a conversion between erythro-
cytes and megakaryocytes [20].

2. Simultaneous perturbations of C/EBPα and PU1 can convert the network
from MegE lineage (megakaryocytes and erythrocytes) to GM lineage (gran-
ulocytes and monocytes) [20], but to reach a specific state (granulocyte or
monocyte), one more gene is required. Besides, our methods also identified
other paths to realise the reprogramming.

3. We also spotted the pivotal role of GATA1 and GATA2 in the transdifferen-
tiation from GM lineage to MegE lineage [20]. However, the over-expression
of GATA2 can only be applied with temporary perturbations, since the per-
manent over-expression of GATA2 leads to absence of MegE lineage.

5 Discussion and Future Work

In this paper, we have developed the temporary and permanent control meth-
ods to identify a minimal set of nodes, such that the temporary or permanent
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perturbations of these nodes guide the network from a source state to a de-
sired target attractor. Together with the instantaneous control [19], we have
been working on bridging the gap between computational control methods and
practical reprogramming of GRNs from three perspectives.

First, we have explored three kinds of perturbations: instantaneous, tem-
porary and permanent perturbations. All of them are feasible to conduct in
biological experiments. Besides that, each kind of perturbations has its own
merits and demerits. (1) Permanent perturbations have a permanent influence
on the dynamics of the system and thus are more invasive than instantaneous
and temporary perturbations. (2) Temporary and permanent perturbations al-
ter the dynamics of networks either for sufficient time or permanently, thus less
number of perturbations are required to achieve the goal compared to instanta-
neous perturbations. Indeed, there is no universal standard of good perturbations
for different biological networks. We provide control methods for different kinds
of perturbations, so that biologists can choose suitable strategies to deal with
different biological networks.

Second, considering the expensive cost and other difficulties in performing
biological experiments, practical constraints are encoded to make our control
strategies more realistic and applicable. Two problems commonly arise in bio-
logical experiments. One is that some genes are essential for cell survival and
thus cannot be turned off. The other is that some genes are harder or more
expensive to perturb. For instance, GATA1 and GATA2 are part of a family
of transcription factors that may have different functions but may have similar
structural features to be recognised by the ‘perturbation tool’. Hence, we adapt
our methods to avoid (1) perturbing certain nodes from ‘expressed’ to ‘not ex-
pressed’ and/or (2) perturbing certain nodes from ‘not expressed’ to ‘expressed’.

Third, so far we have focused on identifying a minimal set of perturbations to
fulfil the control purpose with 100% success rate. Apart from that, given an upper
bound of perturbations, our methods can compute all the control sets within the
upper bound efficiently for different kinds of perturbations. Incorporated with
practical constraints, our methods can compute a rich set of restricted solutions,
which will be beneficial to biological applications.

Currently, we are working a sequential control method, where other attrac-
tors (observable biological phenotypes) can act as intermediates [35]. We want to
drive the network from a source state to a target attractor through intermediate
attractors by applying a sequence of instantaneous or temporary or permanent
perturbations. Such a sequential method can provide more potential reprogram-
ming solutions and may further reduce the number of required perturbations.
Other than that, we plan to extend our work to the control of probabilistic
Boolean networks (PBNs) [36, 37] and explore if and how to adapt the instanta-
neous, temporary and permanent control strategies to such networks.
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